Convective available potential energy in the context of "Inversion (meteorology)"

Play Trivia Questions online!

or

Skip to study material about Convective available potential energy in the context of "Inversion (meteorology)"

Ad spacer

⭐ Core Definition: Convective available potential energy

In meteorology, convective available potential energy (commonly abbreviated as CAPE), is a measure of the capacity of the atmosphere to support upward air movement that can lead to cloud formation and storms. Some atmospheric conditions, such as very warm, moist, air in an atmosphere that cools rapidly with height, can promote strong and sustained upward air movement, possibly stimulating the formation of cumulus clouds or cumulonimbus (thunderstorm) clouds. In that situation the potential energy of the atmosphere to cause upward air movement is very high, so CAPE (a measure of potential energy) would be high and positive. By contrast, other conditions, such as a less warm air parcel or a parcel in an atmosphere with a temperature inversion (in which the temperature increases above a certain height) have much less capacity to support vigorous upward air movement, thus the potential energy level (CAPE) would be much lower, as would the probability of thunderstorms.

More technically, CAPE is the integrated amount of work that the upward (positive) buoyancy force would perform on a given mass of air (called an air parcel) if it rose vertically through the entire atmosphere. Positive CAPE will cause the air parcel to rise, while negative CAPE will cause the air parcel to sink. Nonzero CAPE is an indicator of atmospheric instability in any given atmospheric sounding, a necessary condition for the development of cumulus and cumulonimbus clouds with attendant severe weather hazards.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Convective available potential energy in the context of Atmospheric instability

Atmospheric instability is a condition where the Earth's atmosphere is considered to be unstable and as a result local weather is highly variable through distance and time. Atmospheric instability encourages vertical motion, which is directly correlated to different types of weather systems and their severity. For example, under unstable conditions, a lifted parcel of air will find cooler and denser surrounding air, making the parcel prone to further ascent, in a positive feedback loop.

In meteorology, instability can be described by various indices such as the Bulk Richardson Number, lifted index, K-index, convective available potential energy (CAPE), the Showalter, and the Vertical totals. These indices, as well as atmospheric instability itself, involve temperature changes through the troposphere with height, or lapse rate.

↑ Return to Menu