Congenital red–green color blindness in the context of "Color blind"

Play Trivia Questions online!

or

Skip to study material about Congenital red–green color blindness in the context of "Color blind"

Ad spacer

⭐ Core Definition: Congenital red–green color blindness

Congenital red–green color blindness is an inherited condition that is the root cause of the majority of cases of color blindness. It has no significant symptoms aside from its minor to moderate effect on color vision. It is caused by variation in the functionality of the red and/or green opsin proteins, which are the photosensitive pigment in the cone cells of the retina, which mediate color vision. Males are more likely to inherit red–green color blindness than females, because the genes for the relevant opsins are on the X chromosome. Screening for congenital red–green color blindness is typically performed with the Ishihara or similar color vision test. It is a lifelong condition, and has no known cure or treatment.

This form of color blindness is sometimes referred to historically as daltonism after John Dalton, who had congenital red–green color blindness and was the first to scientifically study it. In other languages, daltonism is still used to describe red–green color blindness, but may also refer colloquially to color blindness in general.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Congenital red–green color blindness in the context of Colour blindness

Color blindness, color vision deficiency (CVD), color anomaly, color deficiency, or impaired color vision is the decreased ability to see color, differences in color, or distinguish shades of color. The severity of color blindness ranges from mostly unnoticeable to full absence of color perception.

Color blindness is usually a sex-linked inherited problem or variation in the functionality of one or more of the three classes of cone cells in the retina, which mediate color vision. The most common form is caused by a genetic condition called congenital red–green color blindness (including protan and deutan types), which affects up to 1 in 12 males (8%) and 1 in 200 females (0.5%). The condition is more prevalent in males, because the opsin genes responsible are located on the X chromosome. Rarer genetic conditions causing color blindness include congenital blue–yellow color blindness (tritan type), blue cone monochromacy, and achromatopsia. Color blindness can also result from physical or chemical damage to the eye, the optic nerve, parts of the brain, or from medication toxicity. Color vision also naturally degrades in old age.

↑ Return to Menu