Commensurability (mathematics)

⭐ In the context of mathematics, commensurability between two non-zero real numbers is determined by examining…

Ad spacer

⭐ Core Definition: Commensurability (mathematics)

In mathematics, two non-zero real numbers a and b are said to be commensurable if their ratio a/b is a rational number; otherwise a and b are called incommensurable. (Recall that a rational number is one that is equivalent to the ratio of two integers.) There is a more general notion of commensurability in group theory.

For example, the numbers 3 and 2 are commensurable because their ratio, 3/2, is a rational number. The numbers and are also commensurable because their ratio, , is a rational number. However, the numbers and 2 are incommensurable because their ratio, , is an irrational number.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Commensurability (mathematics) in the context of Euclid's Elements

The Elements (Ancient Greek: Στοιχεῖα Stoikheîa) is a mathematical treatise written c. 300 BC by the Ancient Greek mathematician Euclid.

The Elements is the oldest extant large-scale deductive treatment of mathematics. Drawing on the works of earlier mathematicians such as Hippocrates of Chios, Eudoxus of Cnidus, and Theaetetus, the Elements is a collection in 13 books of definitions, postulates, geometric constructions, and theorems with their proofs that covers plane and solid Euclidean geometry, elementary number theory, and incommensurability. These include the Pythagorean theorem, Thales' theorem, the Euclidean algorithm for greatest common divisors, Euclid's theorem that there are infinitely many prime numbers, and the construction of regular polygons and polyhedra.

↑ Return to Menu

Commensurability (mathematics) in the context of Irrational number

In mathematics, the irrational numbers are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers. When the ratio of lengths of two line segments is an irrational number, the line segments are also described as being incommensurable, meaning that they share no "measure" in common, that is, there is no length ("the measure"), no matter how short, that could be used to express the lengths of both of the two given segments as integer multiples of itself.

Among irrational numbers are the ratio π of a circle's circumference to its diameter, Euler's number e, the golden ratio φ, and the square root of two. In fact, all square roots of natural numbers, other than of perfect squares, are irrational.

↑ Return to Menu