Computer-aided diagnosis in the context of Knowledge representation and reasoning


Computer-aided diagnosis in the context of Knowledge representation and reasoning

Computer-aided diagnosis Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Computer-aided diagnosis in the context of "Knowledge representation and reasoning"


⭐ Core Definition: Computer-aided diagnosis

Computer-aided detection (CADe), also called computer-aided diagnosis (CADx), are systems that assist doctors in the interpretation of medical images. Imaging techniques in X-ray, MRI, endoscopy, and ultrasound diagnostics yield a great deal of information that the radiologist or other medical professional has to analyze and evaluate comprehensively in a short time. CAD systems process digital images or videos for typical appearances and to highlight conspicuous sections, such as possible diseases, in order to offer input to support a decision taken by the professional.

CAD also has potential future applications in digital pathology with the advent of whole-slide imaging and machine learning algorithms. So far its application has been limited to quantifying immunostaining but is also being investigated for the standard H&E stain.

↓ Menu
HINT:

In this Dossier

Computer-aided diagnosis in the context of Knowledge representation

Knowledge representation (KR) aims to model information in a structured manner to formally represent it as knowledge in knowledge-based systems whereas knowledge representation and reasoning (KRR, KR&R, or KR²) also aims to understand, reason, and interpret knowledge. KRR is widely used in the field of artificial intelligence (AI) with the goal to represent information about the world in a form that a computer system can use to solve complex tasks, such as diagnosing a medical condition or having a natural-language dialog. KR incorporates findings from psychology about how humans solve problems and represent knowledge, in order to design formalisms that make complex systems easier to design and build. KRR also incorporates findings from logic to automate various kinds of reasoning.

Traditional KRR focuses more on the declarative representation of knowledge. Related knowledge representation formalisms mainly include vocabularies, thesaurus, semantic networks, axiom systems, frames, rules, logic programs, and ontologies. Examples of automated reasoning engines include inference engines, theorem provers, model generators, and classifiers.

View the full Wikipedia page for Knowledge representation
↑ Return to Menu