Computational modeling in the context of Blue Brain


Computational modeling in the context of Blue Brain

Computational modeling Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Computational modeling in the context of "Blue Brain"


⭐ Core Definition: Computational modeling

Computer simulation is the running of a mathematical model on a computer, the model being designed to represent the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determined by comparing their results to the real-world outcomes they aim to predict. Computer simulations have become a useful tool for the mathematical modeling of many natural systems in physics (computational physics), astrophysics, climatology, chemistry, biology and manufacturing, as well as human systems in economics, psychology, social science, health care and engineering. Simulation of a system is represented as the running of the system's model. It can be used to explore and gain new insights into new technology and to estimate the performance of systems too complex for analytical solutions.

Computer simulations are realized by running computer programs that can be either small, running almost instantly on small devices, or large-scale programs that run for hours or days on network-based groups of computers. The scale of events being simulated by computer simulations has far exceeded anything possible (or perhaps even imaginable) using traditional paper-and-pencil mathematical modeling. In 1997, a desert-battle simulation of one force invading another involved the modeling of 66,239 tanks, trucks and other vehicles on simulated terrain around Kuwait, using multiple supercomputers in the DoD High Performance Computer Modernization Program.Other examples include a 1-billion-atom model of material deformation; a 2.64-million-atom model of the complex protein-producing organelle of all living organisms, the ribosome, in 2005;a complete simulation of the life cycle of Mycoplasma genitalium in 2012; and the Blue Brain project at EPFL (Switzerland), begun in May 2005 to create the first computer simulation of the entire human brain, right down to the molecular level.

↓ Menu
HINT:

In this Dossier

Computational modeling in the context of Systems biology

Systems biology is the computational and mathematical analysis and modeling of complex biological systems. It is a biology-based interdisciplinary field of study that focuses on complex interactions within biological systems, using a holistic approach (holism instead of the more traditional reductionism) to biological research. This multifaceted research domain necessitates the collaborative efforts of chemists, biologists, mathematicians, physicists, and engineers to decipher the biology of intricate living systems by merging various quantitative molecular measurements with carefully constructed mathematical models. It represents a comprehensive method for comprehending the complex relationships within biological systems. In contrast to conventional biological studies that typically center on isolated elements, systems biology seeks to combine different biological data to create models that illustrate and elucidate the dynamic interactions within a system. This methodology is essential for understanding the complex networks of genes, proteins, and metabolites that influence cellular activities and the traits of organisms.  One of the aims of systems biology is to model and discover emergent properties, of cells, tissues and organisms functioning as a system whose theoretical description is only possible using techniques of systems biology. By exploring how function emerges from dynamic interactions, systems biology bridges the gaps that exist between molecules and physiological processes.

As a paradigm, systems biology is usually defined in antithesis to the so-called reductionist paradigm (biological organisation), although it is consistent with the scientific method. The distinction between the two paradigms is referred to in these quotations: "the reductionist approach has successfully identified most of the components and many of the interactions but, unfortunately, offers no convincing concepts or methods to understand how system properties emerge ... the pluralism of causes and effects in biological networks is better addressed by observing, through quantitative measures, multiple components simultaneously and by rigorous data integration with mathematical models." (Sauer et al.) "Systems biology ... is about putting together rather than taking apart, integration rather than reduction. It requires that we develop ways of thinking about integration that are as rigorous as our reductionist programmes, but different. ... It means changing our philosophy, in the full sense of the term." (Denis Noble)

View the full Wikipedia page for Systems biology
↑ Return to Menu