Computational fluid dynamics in the context of Hypersonic speed


Computational fluid dynamics in the context of Hypersonic speed

⭐ Core Definition: Computational fluid dynamics

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis and data structures to analyze and solve problems that involve fluid flows. Computers are used to perform the calculations required to simulate the free-stream flow of the fluid, and the interaction of the fluid (liquids and gases) with surfaces defined by boundary conditions. With high-speed supercomputers, better solutions can be achieved, and are often required to solve the largest and most complex problems. Ongoing research yields software that improves the accuracy and speed of complex simulation scenarios such as transonic or turbulent flows. Initial validation of such software is typically performed using experimental apparatus such as wind tunnels. In addition, previously performed analytical or empirical analysis of a particular problem can be used for comparison. A final validation is often performed using full-scale testing, such as flight tests.

CFD is applied to a range of research and engineering problems in multiple fields of study and industries, including aerodynamics and aerospace analysis, hypersonics, weather simulation, natural science and environmental engineering, industrial system design and analysis, biological engineering, fluid flows and heat transfer, engine and combustion analysis, and visual effects for film and games.

↓ Menu
HINT:

👉 Computational fluid dynamics in the context of Hypersonic speed

In aerodynamics, hypersonic speed refers to speeds much faster than the speed of sound, usually more than approximately Mach 5.

The precise Mach number at which a craft can be said to be flying at hypersonic speed varies, since individual physical changes in the airflow (like molecular dissociation and ionization) occur at different speeds; these effects collectively become important around Mach 5–10. The hypersonic regime can also be alternatively defined as speeds where specific heat capacity changes with the temperature of the flow as kinetic energy of the moving object is converted into heat.

↓ Explore More Topics
In this Dossier

Computational fluid dynamics in the context of Workstation

A workstation is a special computer designed for technical or scientific applications. Intended primarily to be used by a single user, they are commonly connected to a local area network and run multi-user operating systems. The term workstation has been used loosely to refer to everything from a mainframe computer terminal to a PC connected to a network, but the most common form refers to the class of hardware offered by several current and defunct companies such as Sun Microsystems, Silicon Graphics, Apollo Computer, DEC, HP, NeXT, and IBM which powered the 3D computer graphics revolution of the late 1990s.

Workstations formerly offered higher performance specifications than mainstream personal computers, especially in terms of processing, graphics, memory, and multitasking. Workstations are optimized for the visualization and manipulation of different types of complex data such as 3D mechanical design, engineering simulations like computational fluid dynamics, animation, video editing, image editing, medical imaging, image rendering, computational science, generating mathematical plots, and software development. Typically, the form factor is that of a desktop computer, which consists of a high-resolution display, a keyboard, and a mouse at a minimum, but also offers multiple displays, graphics tablets, and 3D mice for manipulating objects and navigating scenes. Workstations were the first segment of the computer market to present advanced accessories, and collaboration tools like videoconferencing.

View the full Wikipedia page for Workstation
↑ Return to Menu

Computational fluid dynamics in the context of Thermal management (electronics)

All electronic devices and circuitry generate excess heat and thus require thermal management to improve reliability and prevent premature failure. The amount of heat output is equal to the power input, if there are no other energy interactions. There are several techniques for cooling including various styles of heat sinks, thermoelectric coolers, forced air systems and fans, heat pipes, and others. In cases of extreme low environmental temperatures, it may actually be necessary to heat the electronic components to achieve satisfactory operation.

View the full Wikipedia page for Thermal management (electronics)
↑ Return to Menu

Computational fluid dynamics in the context of Aerodynamic

Aerodynamics (from Ancient Greek ἀήρ (aḗr) 'air' and δυναμική (dunamikḗ) 'dynamics') is the study of the motion of air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dynamics and its subfield of gas dynamics, and is an important domain of study in aeronautics. The term aerodynamics is often used synonymously with gas dynamics, the difference being that "gas dynamics" applies to the study of the motion of all gases, and is not limited to air. The formal study of aerodynamics began in the modern sense in the eighteenth century, although observations of fundamental concepts such as aerodynamic drag were recorded much earlier. Most of the early efforts in aerodynamics were directed toward achieving heavier-than-air flight, which was first demonstrated by Otto Lilienthal in 1891. Since then, the use of aerodynamics through mathematical analysis, empirical approximations, wind tunnel experimentation, and computer simulations has formed a rational basis for the development of heavier-than-air flight and a number of other technologies. Recent work in aerodynamics has focused on issues related to compressible flow, turbulence, and boundary layers and has become increasingly computational in nature.

View the full Wikipedia page for Aerodynamic
↑ Return to Menu

Computational fluid dynamics in the context of Wind engineering

Wind engineering is a subset of mechanical engineering, structural engineering, meteorology, and applied physics that analyzes the effects of wind in the natural and the built environment and studies the possible damage, inconvenience or benefits which may result from wind. In the field of engineering it includes strong winds, which may cause discomfort, as well as extreme winds, such as in a tornado, hurricane or heavy storm, which may cause widespread destruction. In the fields of wind energy and air pollution it also includes low and moderate winds as these are relevant to electricity production and dispersion of contaminants.

Wind engineering draws upon meteorology, fluid dynamics, mechanics, geographic information systems, and a number of specialist engineering disciplines, including aerodynamics and structural dynamics. The tools used include atmospheric models, atmospheric boundary layer wind tunnels, and computational fluid dynamics models.

View the full Wikipedia page for Wind engineering
↑ Return to Menu

Computational fluid dynamics in the context of Heat spreader

A heat spreader transfers energy as heat from a hotter source to a colder heat sink or heat exchanger. There are two thermodynamic types, passive and active. The most common sort of passive heat spreader is a plate or block of material having high thermal conductivity, such as copper, aluminum, or diamond. An active heat spreader speeds up heat transfer with expenditure of energy as work supplied by an external source.

View the full Wikipedia page for Heat spreader
↑ Return to Menu