Complex systems in the context of "Herbert A. Simon"

Play Trivia Questions online!

or

Skip to study material about Complex systems in the context of "Herbert A. Simon"

Ad spacer

⭐ Core Definition: Complex systems

A complex system is a system composed of many components that interact with one another. Examples of complex systems are Earth's global climate, organisms, the human brain, infrastructure such as power grid, transportation or communication systems, complex software and electronic systems, social and economic organizations (like cities), an ecosystem, a living cell, and, ultimately, for some authors, the entire universe.

The behavior of a complex system is intrinsically difficult to model due to the dependencies, competitions, relationships, and other types of interactions between their parts or between a given system and its environment. Systems that are "complex" have distinct properties that arise from these relationships, such as nonlinearity, emergence, spontaneous order, adaptation, and feedback loops, among others. Because such systems appear in a wide variety of fields, the commonalities among them have become the topic of their independent area of research. In many cases, it is useful to represent such a system as a network where the nodes represent the components and links represent their interactions.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Complex systems in the context of Regulation

Regulation is the management of complex systems according to a set of rules and trends. In systems theory, these types of rules exist in various fields of biology and society, but the term has slightly different meanings according to context. For example:

↑ Return to Menu

Complex systems in the context of Probability

Probability is a branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. This number is often expressed as a percentage (%), ranging from 0% to 100%. A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the two outcomes ("heads" and "tails") are both equally probable; the probability of "heads" equals the probability of "tails"; and since no other outcomes are possible, the probability of either "heads" or "tails" is 1/2 (which could also be written as 0.5 or 50%).

These concepts have been given an axiomatic mathematical formalization in probability theory, which is used widely in areas of study such as statistics, mathematics, science, finance, gambling, artificial intelligence, machine learning, computer science, game theory, and philosophy to, for example, draw inferences about the expected frequency of events. Probability theory is also used to describe the underlying mechanics and regularities of complex systems.

↑ Return to Menu

Complex systems in the context of Holism in science

Holism in science, holistic science, or methodological holism is an approach to research that emphasizes the study of complex systems. Systems are approached as coherent wholes whose component parts are best understood in context and in relation to both each other and to the whole. Holism typically stands in contrast with reductionism, which describes systems by dividing them into smaller components in order to understand them through their elemental properties.

The holism-individualism dichotomy is especially evident in conflicting interpretations of experimental findings across the social sciences, and reflects whether behavioural analysis begins at the systemic, macro-level (ie. derived from social relations) or the component micro-level (ie. derived from individual agents).

↑ Return to Menu

Complex systems in the context of Indeterminism

Indeterminism is the idea that events (or certain events, or events of certain types) are not caused, or are not caused deterministically.

It is the opposite of determinism and related to chance. It is highly relevant to the philosophical problem of free will, particularly in the form of metaphysical libertarianism. In science, most specifically quantum theory in physics, indeterminism is the belief that no event is certain and the entire outcome of anything is probabilistic. Heisenberg's uncertainty principle and the "Born rule", proposed by Max Born, are often starting points in support of the indeterministic nature of the universe. Indeterminism is also asserted by Sir Arthur Eddington, and Murray Gell-Mann. Indeterminism has been promoted by the French biologist Jacques Monod's essay "Chance and Necessity".The physicist-chemist Ilya Prigogine argued for indeterminism in complex systems.

↑ Return to Menu

Complex systems in the context of Structural functionalism

Structural functionalism, or simply functionalism, is "a framework for building theory that sees society as a complex system whose parts work together to promote solidarity and stability".

This approach looks at society through a macro-level orientation, which is a broad focus on the social structures that shape society as a whole, and believes that society has evolved like organisms. This approach looks at both social structure and social functions. Functionalism addresses society as a whole in terms of the function of its constituent elements; namely norms, customs, traditions, and institutions.

↑ Return to Menu

Complex systems in the context of Molecular dynamics

Molecular dynamics (MD) is a computer simulation method for analyzing the physical movements of atoms and molecules. The atoms and molecules are allowed to interact for a fixed period of time, giving a view of the dynamic "evolution" of the system. In the most common version, the trajectories of atoms and molecules are determined by numerically solving Newton's equations of motion for a system of interacting particles, where forces between the particles and their potential energies are often calculated using interatomic potentials or molecular mechanical force fields. MD simulations are widely applied in chemical physics, materials science, and biophysics.

Because molecular systems typically consist of a vast number of particles, it is impossible to determine the properties of such complex systems analytically; MD simulation circumvents this problem by using numerical methods. However, long MD simulations are mathematically ill-conditioned, generating cumulative errors in numerical integration that can be minimized with proper selection of algorithms and parameters, but not eliminated.

↑ Return to Menu

Complex systems in the context of Variety (cybernetics)

In cybernetics, the term variety denotes the total number of distinguishable elements of a set, most often the set of states, inputs, or outputs of a finite-state machine or transformation, or the binary logarithm of the same quantity. Variety is used in cybernetics as an information theory that is easily related to deterministic finite automata, and less formally as a conceptual tool for thinking about organization, regulation, and stability. It is an early theory of complexity in automata, complex systems, and operations research.

↑ Return to Menu