Commissural fiber in the context of "Axon"

Play Trivia Questions online!

or

Skip to study material about Commissural fiber in the context of "Axon"

Ad spacer

⭐ Core Definition: Commissural fiber

The commissural fibers or transverse fibers are axons that connect the two hemispheres of the brain. Huge numbers of commissural fibers make up the commissural tracts in the brain, the largest of which is the corpus callosum.

In contrast to commissural fibers, association fibers form association tracts that connect regions within the same hemisphere of the brain, and projection fibers connect each region to other parts of the brain or to the spinal cord.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Commissural fiber in the context of Human brain

The human brain is the central organ of the nervous system, and with the spinal cord, comprises the central nervous system. It consists of the cerebrum, the brainstem and the cerebellum. The brain controls most of the activities of the body, processing, integrating, and coordinating the information it receives from the sensory nervous system. The brain integrates sensory information and coordinates instructions sent to the rest of the body.

The cerebrum, the largest part of the human brain, consists of two cerebral hemispheres. Each hemisphere has an inner core composed of white matter, and an outer surface – the cerebral cortex – composed of grey matter. The cortex has an outer layer, the neocortex, and an inner allocortex. The neocortex is made up of six neuronal layers, while the allocortex has three or four. Each hemisphere is divided into four lobes – the frontal, parietal, temporal, and occipital lobes. The frontal lobe is associated with executive functions including self-control, planning, reasoning, and abstract thought, while the occipital lobe is dedicated to vision. Within each lobe, cortical areas are associated with specific functions, such as the sensory, motor, and association regions. Although the left and right hemispheres are broadly similar in shape and function, some functions are associated with one side, such as language in the left and visual-spatial ability in the right. The hemispheres are connected by commissural nerve tracts, the largest being the corpus callosum.

↑ Return to Menu

Commissural fiber in the context of Corpus callosum

The corpus callosum (Latin for "tough body"), also callosal commissure, is a wide, thick nerve tract, consisting of a flat bundle of commissural fibers, beneath the cerebral cortex in the brain. The corpus callosum is only found in placental mammals. It spans part of the longitudinal fissure, connecting the left and right cerebral hemispheres, enabling communication between them. It is the largest white matter structure in the human brain, about 10 cm (3.9 in) in length and consisting of 200–300 million axonal projections.

A number of separate nerve tracts, classed as subregions of the corpus callosum, connect different parts of the hemispheres. The main ones are known as the genu, the rostrum, the trunk or body, and the splenium.

↑ Return to Menu

Commissural fiber in the context of Nerve tract

A nerve tract is a bundle of nerve fibers (axons) connecting nuclei of the central nervous system. In the peripheral nervous system, this is known as a nerve fascicle, and has associated connective tissue. The main nerve tracts in the central nervous system are of three types: association fibers, commissural fibers, and projection fibers. A nerve tract may also be referred to as a commissure, decussation, or neural pathway. A commissure connects the two cerebral hemispheres at the same levels, while a decussation connects at different levels (crosses obliquely).

↑ Return to Menu

Commissural fiber in the context of Commissure

A commissure (/ˈkɒməʃər/) is the location at which two objects abut or are joined. The term is used especially in the fields of anatomy and biology.

In biology, the meeting of the two valves of a brachiopod or clam is a commissure; in botany, the term is used to denote the place where a fern's laterally expanded vein endings come together in a continuous marginal sorus.

↑ Return to Menu

Commissural fiber in the context of Disconnection syndrome

Disconnection syndrome is a general term for a collection of neurological symptoms caused – via lesions to associational or commissural nerve fibres – by damage to the white matter axons of communication pathways in the cerebrum (not to be confused with the cerebellum), independent of any lesions to the cortex. The behavioral effects of such disconnections are relatively predictable in adults. Disconnection syndromes usually reflect circumstances where regions A and B still have their functional specializations except in domains that depend on the interconnections between the two regions.

Callosal syndrome, or split-brain, is an example of a disconnection syndrome from damage to the corpus callosum between the two hemispheres of the brain. Disconnection syndrome can also lead to aphasia, left-sided apraxia, and tactile aphasia, among other symptoms. Other types of disconnection syndrome include conduction aphasia (lesion of the association tract connecting Broca’s area and Wernicke’s), agnosia, apraxia, pure alexia, etc.

↑ Return to Menu

Commissural fiber in the context of Habenular commissure

The habenular commissure is a nerve tract of commissural fibers that connects the habenular nuclei on both sides of the habenular trigone in the epithalamus.

The habenular commissure is part of the habenular trigone (a small depressed triangular area situated in front of the superior colliculus and on the lateral aspect of the posterior part of the taenia thalami). The habenulum trigone also contains the habenular nuclei. Fibers enter the habenular trigone from the stalk of the pineal gland, and the habenular commissure. Most of the habenular trigone's fibers are, however, directed downward and form a bundle, the fasciculus retroflexus, which passes medial to the red nucleus, and, after decussating with the corresponding fasciculus of the opposite side, ends in the interpeduncular nucleus.

↑ Return to Menu