Comet nucleus in the context of "Albedo"

Play Trivia Questions online!

or

Skip to study material about Comet nucleus in the context of "Albedo"

Ad spacer

⭐ Core Definition: Comet nucleus

The nucleus is the solid, central part of a comet, formerly termed a dirty snowball or an icy dirtball. A cometary nucleus is composed of rock, dust, and frozen gases. When heated by the Sun, the gases sublime and produce an atmosphere surrounding the nucleus known as the coma. The force exerted on the coma by the Sun's radiation pressure and solar wind cause an enormous tail to form, which points away from the Sun. A typical comet nucleus has an albedo of 0.04. This is blacker than coal, and may be caused by a covering of dust.

Results from the Rosetta and Philae spacecraft show that the nucleus of 67P/Churyumov–Gerasimenko has no magnetic field, which suggests that magnetism may not have played a role in the early formation of planetesimals. Further, the ALICE spectrograph on Rosetta determined that electrons (within 1 km (0.62 mi) above the comet nucleus) produced from photoionization of water molecules by solar radiation, and not photons from the Sun as thought earlier, are responsible for the degradation of water and carbon dioxide molecules released from the comet nucleus into its coma.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Comet nucleus in the context of Astronomical object

An astronomical object, celestial object, stellar object or heavenly object is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms object and body are often used interchangeably. However, an astronomical body, celestial body or heavenly body is a single, tightly bound, contiguous physical object, while an astronomical or celestial object admits a more complex, less cohesively bound structure, which may consist of multiple bodies or even other objects with substructures.

Examples of astronomical objects include planetary systems, star clusters, nebulae, and galaxies, while asteroids, moons, planets, and stars are astronomical bodies. A comet may be identified as both a body and an object: It is a body when referring to the frozen nucleus of ice and dust, and an object when describing the entire comet with its diffuse coma and tail.

↑ Return to Menu

Comet nucleus in the context of Coma (cometary)

The coma is the nebulous envelope around the nucleus of a comet, formed when the comet passes near the Sun in its highly elliptical orbit. As the comet warms, parts of it sublimate; this gives a comet a diffuse appearance when viewed through telescopes and distinguishes it from stars. The word coma comes from the Greek κόμη (kómē), which means "hair" and is the origin of the word comet itself.

The coma is generally made of ice and comet dust. Water composes up to 90% of the volatiles that outflow from the nucleus when the comet is within 3–4 au (280–370 million mi; 450–600 million km) from the Sun. The H2O parent molecule is destroyed primarily through photodissociation and to a much smaller extent photoionization. The solar wind plays a minor role in the destruction of water compared to photochemistry. Larger dust particles are left along the comet's orbital path while smaller particles are pushed away from the Sun into the comet's tail by light pressure.

↑ Return to Menu

Comet nucleus in the context of Comet tail

A comet tail is a projection of material from a comet that often becomes visible when illuminated by the Sun, while the comet passes through the inner Solar System. As a comet approaches the Sun, solar radiation causes the volatile materials within the comet to vaporize and stream out of the comet nucleus, carrying dust away with them.

Blown by the solar wind, these materials typically form two separate tails that extend outwards from the comet's orbit: the dust tail, composed of comet dust, and the gas or ion tail, composed of ionized gases. They become visible through different mechanisms: the dust tail reflects sunlight directly, while the gas tail glows because of the ionization.

↑ Return to Menu