Cognitive functions in the context of Mental arithmetic


Cognitive functions in the context of Mental arithmetic

Cognitive functions Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Cognitive functions in the context of "Mental arithmetic"


⭐ Core Definition: Cognitive functions

Cognitive skills are skills of the mind, as opposed to other types of skills such as motor skills, social skills or life skills. Cognitive skills include literacy, self-reflection, logical reasoning, abstract thinking, critical thinking, introspection and mental arithmetic. Cognitive skills vary in processing complexity, and can range from more fundamental processes such as perception and various memory functions, to more sophisticated processes such as decision making, problem solving and metacognition.

↓ Menu
HINT:

In this Dossier

Cognitive functions in the context of Psychomotor learning

Psychomotor learning is the relationship between cognitive functions and physical movement. Psychomotor learning is demonstrated by physical skills such as movement, coordination, manipulation, dexterity, grace, strength, speed—actions which demonstrate the fine or gross motor skills, such as use of precision instruments or tools, and walking. Sports and dance are the richest realms of gross psychomotor skills.

Behavioral examples include driving a car, throwing a ball, and playing a musical instrument. In psychomotor learning research, attention is given to the learning of coordinated activity involving the arms, hands, fingers, and feet, while verbal processes are not emphasized.

View the full Wikipedia page for Psychomotor learning
↑ Return to Menu

Cognitive functions in the context of Activity-dependent plasticity

Activity-dependent plasticity is a form of functional and structural neuroplasticity that arises from the use of cognitive functions and personal experience. Hence, it is the biological basis for learning and the formation of new memories. Activity-dependent plasticity is a form of neuroplasticity that arises from intrinsic or endogenous activity, as opposed to forms of neuroplasticity that arise from extrinsic or exogenous factors, such as electrical brain stimulation- or drug-induced neuroplasticity. The brain's ability to remodel itself forms the basis of the brain's capacity to retain memories, improve motor function, and enhance comprehension and speech amongst other things. It is this trait to retain and form memories that is associated with neural plasticity and therefore many of the functions individuals perform on a daily basis. This plasticity occurs as a result of changes in gene expression which are triggered by signaling cascades that are activated by various signaling molecules (e.g., calcium, dopamine, and glutamate, among many others) during increased neuronal activity.

The brain's ability to adapt toward active functions allows humans to specialize in specific processes based on relative use and activity. For example, a right-handed person may perform any movement poorly with their left hand but continuous practice with the non-dominant hand can cause one to become ambidextrous.

View the full Wikipedia page for Activity-dependent plasticity
↑ Return to Menu