Cobalt in the context of "Kamacite"

Play Trivia Questions online!

or

Skip to study material about Cobalt in the context of "Kamacite"

Ad spacer

⭐ Core Definition: Cobalt

Cobalt is a chemical element; it has symbol Co and atomic number 27. As with nickel, cobalt is found in the Earth's crust only in a chemically combined form, save for small deposits found in alloys of natural meteoric iron. The free element, produced by reductive smelting, is a hard, lustrous, somewhat brittle, gray metal.

Cobalt-based blue pigments (cobalt blue) have been used since antiquity for jewelry and paints, and to impart a distinctive blue tint to glass. The color was long thought to be due to the metal bismuth. Miners had long used the name kobold ore (German for goblin ore) for some of the blue pigment-producing minerals. They were so named because they were poor in known metals and gave off poisonous arsenic-containing fumes when smelted. In 1735, such ores were found to be reducible to a new metal (the first discovered since ancient times), which was ultimately named for the kobold.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Cobalt in the context of Magnetism

Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other. Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.

The most familiar effects occur in ferromagnetic materials, which are strongly attracted by magnetic fields and can be magnetized to become permanent magnets, producing magnetic fields themselves. Demagnetizing a magnet is also possible. Only a few substances are ferromagnetic; the most common ones are iron, cobalt, nickel, and their alloys.

↑ Return to Menu

Cobalt in the context of Natural resources of Africa

Africa has a large quantity of natural resources, including diamonds, sugar, salt, gold, iron, cobalt, uranium, copper, bauxite, silver, petroleum, natural gas and cocoa beans, but also tropical timber and tropical fruit.

Recently discovered oil reserves have increased the importance of the commodity in African economies. Nigeria, Angola, Republic of the Congo, Equatorial Guinea, Algeria, Libya, Egypt, and South Sudan are among the largest oil producers in Africa. The United States and European countries took most of the Democratic Republic of the Congo's (DRC) oil production. Oil is provided by both continental and offshore productions. Sudan's oil exports in 2010 are estimated by the United States Department of State at US$9 billion.

↑ Return to Menu

Cobalt in the context of Abyssal plain

An abyssal plain is an underwater plain on the deep ocean floor, usually found at depths between 3,000 and 6,000 metres (9,800 and 19,700 ft). Lying generally between the foot of a continental rise and a mid-ocean ridge, abyssal plains cover more than 50% of the Earth's surface. They are among the flattest, smoothest, and least explored regions on Earth. Abyssal plains are key geologic elements of oceanic basins, the other elements being an elevated mid-ocean ridge and flanking abyssal hills.

The creation of the abyssal plain is the result of the spreading of the seafloor (plate tectonics) and the melting of the lower oceanic crust. Magma rises from above the asthenosphere (a layer of the upper mantle), and as this basaltic material reaches the surface at mid-ocean ridges, it forms new oceanic crust, which is constantly pulled sideways by spreading of the seafloor. Abyssal plains result from the blanketing of an originally uneven surface of oceanic crust by fine-grained sediments, mainly clay and silt. Much of this sediment is deposited by turbidity currents that have been channelled from the continental margins along submarine canyons into deeper water. The rest is composed chiefly of pelagic sediments. Metallic nodules are common in some areas of the plains, with varying concentrations of metals, including manganese, iron, nickel, cobalt, and copper. There are also amounts of carbon, nitrogen, phosphorus and silicon, due to material that comes down and decomposes.

↑ Return to Menu

Cobalt in the context of Serpentine group

Serpentine subgroup (part of the kaolinite-serpentine group in the category of phyllosilicates) are greenish, brownish, or spotted minerals commonly found in serpentinite. They are used as a source of magnesium and asbestos, and as decorative stone. The name comes from the greenish color and smooth or scaly appearance from the Latin serpentinus, meaning "snake-like".

Serpentine subgroup is a set of common rock-forming hydrous magnesium iron phyllosilicate ((Mg,Fe)
3
Si
2
O
5
(OH)
4
) minerals, resulting from the metamorphism of the minerals that are contained in mafic to ultramafic rocks. They may contain minor amounts of other elements including chromium, manganese, cobalt or nickel. In mineralogy and gemology, serpentine may refer to any of the 20 varieties belonging to the serpentine subgroup. Owing to admixture, these varieties are not always easy to individualize, and distinctions are not usually made. There are three important mineral polymorphs of serpentine: antigorite, lizardite and chrysotile.

↑ Return to Menu

Cobalt in the context of Magnet

A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets.

A permanent magnet is an object made from a material that is magnetized and creates its own persistent magnetic field. An everyday example is a refrigerator magnet used to hold notes on a refrigerator door. Materials that can be magnetized, which are also the ones that are strongly attracted to a magnet, are called ferromagnetic (or ferrimagnetic). These include the elements iron, nickel and cobalt and their alloys, some alloys of rare-earth metals, and some naturally occurring minerals such as lodestone. Although ferromagnetic (and ferrimagnetic) materials are the only ones attracted to a magnet strongly enough to be commonly considered magnetic, all other substances respond weakly to a magnetic field, by one of several other types of magnetism.

↑ Return to Menu

Cobalt in the context of Bioleaching

Bioleaching is the extraction or liberation of metals from their ores through the use of living organisms. Bioleaching is one of several applications within biohydrometallurgy and several methods are used to treat ores or concentrates containing copper, zinc, lead, arsenic, antimony, nickel, molybdenum, gold, silver, and cobalt.

Bioleaching falls into two broad categories. The first, is the use of microorganisms to oxidize refractory minerals to release valuable metals such and gold and silver. Most commonly the minerals that are the target of oxidization are pyrite and arsenopyrite.

↑ Return to Menu

Cobalt in the context of Lead-glazed earthenware

Lead-glazed earthenware is one of the traditional types of earthenware with a ceramic glaze, which coats the ceramic bisque body and renders it impervious to liquids, as terracotta itself is not. Plain lead glaze is shiny and transparent after firing. Coloured lead glazes are shiny and either translucent or opaque after firing. Three other traditional techniques are tin-glazed (in fact this is lead glaze with a small amount of tin added), which coats the ware with an opaque white glaze suited for overglaze brush-painted colored enamel designs; salt glaze pottery, also often stoneware; and the feldspathic glazes of Asian porcelain. Modern materials technology has invented new glazes that do not fall into these traditional categories.

In lead glazes, tints provided by impurities render greenish to brownish casts, with aesthetic possibilities that are not easily controlled in the kiln. The Romans used lead glazes for high-quality oil lamps and drinking cups. At the same time in China, green-glazed pottery dating back to the Han period (25–220 AD) gave rise eventually to the sancai ('three-color') Tang dynasty ceramics, where the white clay body was coated with coloured glazes and fired at a temperature of 800 degrees C. Lead oxide was the principal flux in the glaze. Polychrome effects (i.e. the colours) were obtained by using the oxides of copper (which turns green), iron (brownish yellow), and less often manganese (brown) and cobalt (blue).

↑ Return to Menu

Cobalt in the context of Deep sea mining

Deep sea mining is the extraction of minerals from the seabed of the deep sea. The main ores of commercial interest are polymetallic nodules, which are found at depths of 4–6 km (2.5–3.7 mi) primarily on the abyssal plain. The Clarion–Clipperton zone (CCZ) alone contains over 21 billion metric tons of these nodules, with minerals such as copper, nickel, cobalt and manganese making up roughly 30% of their weight. It is estimated that the global ocean floor holds more than 120 million tons of cobalt, five times the amount found in terrestrial reserves.

As of July 2024, only exploratory licenses have been issued, with no commercial-scale deep sea mining operations yet. The International Seabed Authority (ISA) regulates all mineral-related activities in international waters and has granted 31 exploration licenses so far: 19 for polymetallic nodules, mostly in the CCZ; 7 for polymetallic sulphides in mid-ocean ridges; and 5 for cobalt-rich crusts in the Western Pacific Ocean. There is a push for deep sea mining to commence by 2025, when regulations by the ISA are expected to be completed.

↑ Return to Menu

Cobalt in the context of Mineral (nutrient)

In the context of nutrition, a mineral is a chemical element. Some "minerals" are essential for life, but most are not. Minerals are one of the four groups of essential nutrients; the others are vitamins, essential fatty acids, and essential amino acids. The five major minerals in the human body are calcium, phosphorus, potassium, sodium, and magnesium. The remaining minerals are called "trace elements". The generally accepted trace elements are iron, chlorine, cobalt, copper, zinc, manganese, molybdenum, iodine, selenium, and bromine; there is some evidence that there may be more.

The four organogenic elements, namely carbon, hydrogen, oxygen, and nitrogen (CHON), that comprise roughly 96% of the human body by weight, are usually not considered as minerals (nutrient). In fact, in nutrition, the term "mineral" refers more generally to all the other functional and structural elements found in living organisms.

↑ Return to Menu