Coating in the context of Parts cleaning


Coating in the context of Parts cleaning

Coating Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Coating in the context of "Parts cleaning"


⭐ Core Definition: Coating

A coating is a covering that is applied to the surface of an object, or substrate. The purpose of applying the coating may be decorative, functional, or both. Coatings may be applied as liquids, gases or solids e.g. powder coatings.

Paints and lacquers are coatings that mostly have dual uses, which are protecting the substrate and being decorative, although some artists paints are only for decoration, and the paint on large industrial pipes is for identification (e.g. blue for process water, red for fire-fighting control) in addition to preventing corrosion. Along with corrosion resistance, functional coatings may also be applied to change the surface properties of the substrate, such as adhesion, wettability, or wear resistance. In other cases the coating adds a completely new property, such as a magnetic response or electrical conductivity (as in semiconductor device fabrication, where the substrate is a wafer), and forms an essential part of the finished product.

↓ Menu
HINT:

In this Dossier

Coating in the context of Lacquer

Lacquer is a type of hard and usually shiny coating or finish applied to materials such as wood or metal. It is most often made from tree sap and wax and has been in use since antiquity.

Asian lacquerware, which may be called "true lacquer", are objects coated with the treated, dyed and dried sap of Toxicodendron vernicifluum or related trees, applied in several coats to a base that is usually wood. This dries to a very hard and smooth surface layer which is durable, waterproof, and attractive in feel and look. Asian lacquer is sometimes painted with pictures, inlaid with shell and other materials, or carved, as well as dusted with gold and given other further decorative treatments.

View the full Wikipedia page for Lacquer
↑ Return to Menu

Coating in the context of Sand blaster

Sandblasting, sometimes known as abrasive blasting, is the operation of forcibly propelling a stream of abrasive material against a surface under high pressure to smooth a rough surface, roughen a smooth surface, shape a surface or remove surface contaminants. A pressurised fluid, typically compressed air, or a centrifugal wheel is used to propel the blasting material (often called the media). The first abrasive blasting process was patented by Benjamin Chew Tilghman on 18 October 1870.

There are several variants of the process, using various media; some are highly abrasive, whereas others are milder. The most abrasive are shot blasting (with metal shot) and sandblasting (with sand). Moderately abrasive variants include glass bead blasting (with glass beads) and plastic media blasting (PMB) with ground-up plastic stock or walnut shells and corncobs. Some of these substances can cause anaphylactic shock to individuals allergic to the media. A mild version is sodablasting (with baking soda). In addition, there are alternatives that are barely abrasive or nonabrasive, such as ice blasting and dry-ice blasting.

View the full Wikipedia page for Sand blaster
↑ Return to Menu

Coating in the context of Sizing

Sizing or size is a substance that is applied to, or incorporated into, other materials—especially papers and textiles—to act as a protective filler or glaze. Sizing is used in papermaking and textile manufacturing to change the absorption and wear characteristics of those materials.

Sizing is used for oil-based surface preparation for gilding (sometimes called mordant in this context). It is used by painters and artists to prepare paper and textile surfaces for some art techniques. Sizing is used in photography to increase the sharpness of a print, to change the glossiness of a print, or for other purposes depending on the type of paper and printing technique.

View the full Wikipedia page for Sizing
↑ Return to Menu

Coating in the context of Spray painting

Spray painting is a painting technique in which a device sprays coating material (paint, ink, varnish, etc.) through the air onto a surface. The most common types employ compressed gas—usually air—to atomize and direct the paint particles.

Spray guns evolved from airbrushes, and the two are usually distinguished by their size and the size of the spray pattern they produce. Airbrushes are hand-held and used instead of a brush for detailed work such as photo retouching, painting nails, or fine art. Air gun spraying uses generally larger equipment. It is typically used for covering large surfaces with an even coating of liquid. Spray guns can either be automated or hand-held and have interchangeable heads to allow for different spray patterns.

View the full Wikipedia page for Spray painting
↑ Return to Menu

Coating in the context of Cellulose acetate

In biochemistry, cellulose acetate refers to any acetate ester of cellulose, usually cellulose diacetate. It was first prepared in 1865. A bioplastic, cellulose acetate is used as a film base in photography, as a component in some coatings, and as a frame material for eyeglasses; it is also used as a synthetic fiber in the manufacture of cigarette filters and playing cards. In photographic film, cellulose acetate film replaced nitrate film in the 1950s, being far less flammable and cheaper to produce.

Water-soluble cellulose acetate (WSCA) has been used as a dietary fiber (prebiotic), in relation with weight loss and Akkermansia muciniphila.

View the full Wikipedia page for Cellulose acetate
↑ Return to Menu

Coating in the context of Thermal spraying

Thermal spraying techniques are coating processes in which melted (or heated) materials are sprayed onto a surface. The "feedstock" (coating precursor) is heated by electrical (plasma or arc) or chemical means (combustion flame).

Thermal spraying can provide thick coatings (approx. thickness range is 20 microns to several mm, depending on the process and feedstock), over a large area at high deposition rate as compared to other coating processes such as electroplating, physical and chemical vapor deposition. Coating materials available for thermal spraying include metals, alloys, ceramics, plastics and composites. They are fed in powder or wire form, heated to a molten or semimolten state and accelerated towards substrates in the form of micrometer-size particles. Combustion or electrical arc discharge is usually used as the source of energy for thermal spraying. Resulting coatings are made by the accumulation of numerous sprayed particles. The surface may not heat up significantly, allowing the coating of flammable substances.

View the full Wikipedia page for Thermal spraying
↑ Return to Menu

Coating in the context of Coinage metal

The coinage metals comprise those metallic chemical elements and alloys which have been used to mint coins. Historically, most coinage metals are from the three nonradioactive members of group 11 of the periodic table: copper, silver and gold. Copper is usually augmented with tin or other metals to form bronze. Gold, silver and bronze or copper were the principal coinage metals of the ancient world, the medieval period and into the late modern period when the diversity of coinage metals increased. Coins are often made from more than one metal, either using alloys, coatings (cladding/plating) or bimetallic configurations. While coins are primarily made from metal, some non-metallic materials have also been used.

View the full Wikipedia page for Coinage metal
↑ Return to Menu

Coating in the context of Passivation (chemistry)

In physical chemistry and engineering, passivation is coating a material so that it becomes "passive", that is, less readily affected or corroded by the environment. Passivation involves creation of an outer layer of shield material that is applied as a microcoating, created by chemical reaction with the base material, or allowed to build by spontaneous oxidation in the air. As a technique, passivation is the use of a light coat of a protective material, such as metal oxide, to create a shield against corrosion. Passivation of silicon is used during fabrication of microelectronic devices. Undesired passivation of electrodes, called "fouling", increases the circuit resistance so it interferes with some electrochemical applications such as electrocoagulation for wastewater treatment, amperometric chemical sensing, and electrochemical synthesis.

When exposed to air, many metals naturally form a hard, relatively inert surface layer, usually an oxide (termed the "native oxide layer") or a nitride, that serves as a passivation layer - i.e. these metals are "self-protecting". In the case of silver, the dark tarnish is a passivation layer of silver sulfide formed from reaction with environmental hydrogen sulfide. Aluminium similarly forms a stable protective oxide layer which is why it does not "rust". (In contrast, some base metals, notably iron, oxidize readily to form a rough, porous coating of rust that adheres loosely, is of higher volume than the original displaced metal, and sloughs off readily; all of which permit & promote further oxidation.) The passivation layer of oxide markedly slows further oxidation and corrosion in room-temperature air for aluminium, beryllium, chromium, zinc, titanium, and silicon (a metalloid). The inert surface layer formed by reaction with air has a thickness of about 1.5 nm for silicon, 1–10 nm for beryllium, and 1 nm initially for titanium, growing to 25 nm after several years. Similarly, for aluminium, it grows to about 5 nm after several years.

View the full Wikipedia page for Passivation (chemistry)
↑ Return to Menu

Coating in the context of Adobe

Adobe (/əˈdbi/ ə-DOH-bee; Spanish: [aˈðoβe]; via Spanish, from Arabic الطّوب (at-tūb)) is a building material made from loam and organic materials. Adobe is Spanish for mudbrick. In some English-speaking regions of Spanish heritage, such as the Southwestern United States, the term is used to refer to any kind of earthen construction, or various architectural styles like Pueblo Revival or Territorial Revival. Most adobe buildings are similar in appearance to cob and rammed earth buildings. Adobe is among the earliest building materials, and is used throughout the world.

Adobe architecture has been dated to before 5,100 BP.

View the full Wikipedia page for Adobe
↑ Return to Menu

Coating in the context of Handle

A handle is a part of, or an attachment to, an object that allows it to be grasped and manipulated by hand. The design of each type of handle involves substantial ergonomic issues, even where these are dealt with intuitively or by following tradition. Handles for tools are an important part of their function, enabling the user to exploit the tools to maximum effect. Package handles allow for convenient carrying of packages.

View the full Wikipedia page for Handle
↑ Return to Menu

Coating in the context of Formaldehyde

Formaldehyde (/fɔːrˈmældɪhd/ for-MAL-di-hide, US also /fər-/ fər-) (systematic name methanal) is an organic compound with the chemical formula CH2O and structure H2C=O. The compound is a pungent, colourless gas that polymerises spontaneously into paraformaldehyde. It is stored as aqueous solutions (formalin), which consists mainly of the hydrate CH2(OH)2. It is the simplest of the aldehydes (R−CHO). As a precursor to many other materials and chemical compounds, in 2006 the global production of formaldehyde was estimated at 12 million tons per year. It is mainly used in the production of industrial resins, e.g., for particle board and coatings.

Formaldehyde also occurs naturally. It is derived from the degradation of serine, dimethylglycine, and lipids. Demethylases act by converting N-methyl groups to formaldehyde.

View the full Wikipedia page for Formaldehyde
↑ Return to Menu

Coating in the context of Castor oil

Castor oil is a vegetable oil pressed from castor beans, the seeds of the plant Ricinus communis. The seeds are 40 to 60 percent oil. It is a colourless or pale yellow liquid with a distinct taste and odor. Its boiling point is 313 °C (595 °F) and its density is 0.961 g/cm. It includes a mixture of triglycerides in which about 90 percent of fatty acids are ricinoleates. Oleic acid and linoleic acid are the other significant components.

Some 270,000–360,000 tonnes (600–800 million pounds) of castor oil are produced annually for a variety of uses. Castor oil and its derivatives are used in the manufacturing of soaps, lubricants, hydraulic and brake fluids, paints, dyes, coatings, inks, cold-resistant plastics, waxes and polishes, nylon, and perfumes.

View the full Wikipedia page for Castor oil
↑ Return to Menu

Coating in the context of Nitride

In chemistry, a nitride is a chemical compound of nitrogen. Nitrides can be inorganic or organic, ionic or covalent. The nitride anion, N, is very elusive but compounds of nitride are numerous, although rarely naturally occurring. Some nitrides have a found applications, such as wear-resistant coatings (e.g., titanium nitride, TiN), hard ceramic materials (e.g., silicon nitride, Si3N4), and semiconductors (e.g., gallium nitride, GaN). The development of GaN-based light emitting diodes was recognized by the 2014 Nobel Prize in Physics. Metal nitrido complexes are also common.

Synthesis of inorganic metal nitrides is challenging because nitrogen gas (N2) is not very reactive at low temperatures, but it becomes more reactive at higher temperatures. Therefore, a balance must be achieved between the low reactivity of nitrogen gas at low temperatures and the entropy driven formation of N2 at high temperatures. However, synthetic methods for nitrides are growing more sophisticated and the materials are of increasing technological relevance.

View the full Wikipedia page for Nitride
↑ Return to Menu

Coating in the context of Inorganic chemistry

Inorganic chemistry deals with synthesis and behavior of inorganic and organometallic compounds. This field covers chemical compounds that are not carbon-based, which are the subjects of organic chemistry. The distinction between the two disciplines is far from absolute, as there is much overlap in the subdiscipline of organometallic chemistry. It has applications in every aspect of the chemical industry, including catalysis, materials science, pigments, surfactants, coatings, medications, fuels, and agriculture.

View the full Wikipedia page for Inorganic chemistry
↑ Return to Menu

Coating in the context of Layer (electronics)

In electronic engineering, a layer is the deposition of molecules on a substrate or base (glass, ceramic, semiconductor, or [bio]plastic). High temperature substrates include stainless steel, polyimide film, and PET.

Generally, a layer with a depth of less than one micrometre is called a thin film, while a depth greater than one micrometre is called a coating.

View the full Wikipedia page for Layer (electronics)
↑ Return to Menu

Coating in the context of Paint stripper

Paint stripper or paint remover is a chemical product designed to remove paint, finishes, and coatings, while also cleaning the underlying surface. Chemical paint removers are advantageous because they act on any kind of geometry and they are cheap. They can however be slow acting.

Paint can also be removed using mechanical methods (scraping or sanding) or heat (hot air, radiant heat, or steam).

View the full Wikipedia page for Paint stripper
↑ Return to Menu