Cloning in the context of "Somatic cell"

Play Trivia Questions online!

or

Skip to study material about Cloning in the context of "Somatic cell"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Cloning in the context of Reproduction

Reproduction (or procreation or breeding) is the biological process by which new individual organisms – "offspring" – are produced from their "parent" or parents. There are two forms of reproduction: asexual and sexual.

In asexual reproduction, an organism can reproduce without the involvement of another organism. Asexual reproduction is not limited to single-celled organisms. The cloning of an organism is a form of asexual reproduction. By asexual reproduction, an organism creates a genetically similar or identical copy of itself. The evolution of sexual reproduction is a major puzzle for biologists. The two-fold cost of sexual reproduction is that only 50% of organisms reproduce and organisms only pass on 50% of their genes.

↑ Return to Menu

Cloning in the context of Offspring

In biology, offspring are the young creation of living organisms, produced either by sexual or asexual reproduction. Collective offspring may be known as a brood or progeny. This can refer to a set of simultaneous offspring, such as the chicks hatched from one clutch of eggs, or to all offspring produced over time, as with the honeybee. Offspring can occur after mating, artificial insemination, or as a result of cloning.

Human offspring (descendants) are referred to as children; male children are sons and female children are daughters (see Kinship).

↑ Return to Menu

Cloning in the context of Cutting (plant)

A plant cutting is a piece of a plant that is used in horticulture for vegetative (asexual) propagation. A piece of the stem or root of the source plant is placed in a suitable medium such as moist soil. If the conditions are suitable, the plant piece will begin to grow as a new plant independent of the parent, a process known as striking. A stem cutting produces new roots, and a root cutting produces new stems. Some plants can be grown from leaf pieces, called leaf cuttings, which produce both stems and roots. The scions used in grafting are also called cuttings.

Propagating plants from cuttings is an ancient form of cloning. There are several advantages of cuttings, mainly that the produced offspring are practically clones of their parent plants. If a plant has favorable traits, it can continue to pass down its advantageous genetic information to its offspring. This is especially economically advantageous as it allows commercial growers to clone a certain plant to ensure consistency throughout their crops.

↑ Return to Menu

Cloning in the context of Offset (botany)

In botany and horticulture, an offset (also called a pup, mainly in the US,) is a small, virtually complete daughter plant that has been naturally and asexually produced on the mother plant. They are clones, meaning that they are genetically identical to the mother plant. They can divide mitotically. In the plant nursery business and gardens, they are detached and grown in order to produce new plants. This is a cheap and simple process for those plants that readily produce offsets as it does not usually require specialist materials and equipment.

An offset or 'pup' may also be used as a broad term to refer to any short shoot originating from the ground at the base of another shoot. The term 'sucker' has also been used as well, especially for bromeliads, which can be short lived plants and when the parent plant has flowered, they signal the root nodes to form new plants.

↑ Return to Menu

Cloning in the context of Budding

Budding or blastogenesis is a type of asexual reproduction in which a new organism develops from an outgrowth or bud due to cell division at one particular site. For example, the small bulb-like projection coming out from the yeast cell is known as a bud. Since the reproduction is asexual, the newly created organism is a clone and, excepting mutations, is genetically identical to the parent organism. Organisms such as hydra use regenerative cells for reproduction in the process of budding.

In hydra, a bud develops as an outgrowth due to repeated cell division of the parent body at one specific site. These buds develop into tiny individuals and, when fully mature, detach from the parent body and become new independent individuals.

↑ Return to Menu

Cloning in the context of Coral

Corals are colonial marine invertebrates within the subphylum Anthozoa of the phylum Cnidaria. They typically form compact colonies of many identical individual polyps. Coral species include the important reef builders that inhabit tropical oceans and secrete calcium carbonate to form a hard skeleton.

A coral "group" is a colony of very many genetically identical polyps. Each polyp is a sac-like animal typically only a few millimeters in diameter and a few centimeters in height. A set of tentacles surround a central mouth opening. Each polyp excretes an exoskeleton near the base. Over many generations, the colony thus creates a skeleton characteristic of the species which can measure up to several meters in size. Individual colonies grow by asexual reproduction of polyps. Corals also breed sexually by spawning: polyps of the same species release gametes simultaneously overnight, often around a full moon. Fertilized eggs form planulae, a mobile early form of the coral polyp which, when mature, settles to form a new colony.

↑ Return to Menu

Cloning in the context of Stony coral

Scleractinia, also called stony corals or hard corals, are marine animals in the phylum Cnidaria that build themselves a hard skeleton. The individual animals are known as polyps and have a cylindrical body crowned by an oral disc in which a mouth is fringed with tentacles. Although some species are solitary, most are colonial. The founding polyp settles and starts to secrete calcium carbonate to protect its soft body. Solitary corals can be as much as 25 cm (10 in) across but in colonial species the polyps are usually only a few millimetres in diameter. These polyps reproduce asexually by budding, but remain attached to each other, forming a multi-polyp colony of clones with a common skeleton, which may be up to several metres in diameter or height according to species.

The shape and appearance of each coral colony depends not only on the species, but also on its location, depth, the amount of water movement and other factors. Many shallow-water corals contain symbiont unicellular organisms known as zooxanthellae within their tissues. These give their colour to the coral which thus may vary in hue depending on what species of symbiont it contains. Stony corals are closely related to sea anemones, and like them are armed with stinging cells known as cnidocytes. Corals reproduce both sexually and asexually. Most species release gametes into the sea where fertilisation takes place, and the planula larvae drift as part of the plankton, but a few species brood their eggs. Asexual reproduction is mostly by fragmentation, when part of a colony becomes detached and reattaches elsewhere.

↑ Return to Menu

Cloning in the context of Turritopsis dohrnii

Turritopsis dohrnii, also known as the immortal jellyfish, is a species of small, biologically immortal Medusozoa (jellyfish) found worldwide in temperate to tropic waters. It is one of the few known cases of animals capable of completely reverting to a sexually immature, colonial stage after having reached sexual maturity as a solitary individual.

Like most other hydrozoans, T. dohrnii begin their lives as tiny, free-swimming larvae known as planulae. As a planula settles down, it gives rise to a colony of polyps that are attached to the sea floor. All the polyps and medusa arising from a single planula are clones. The polyps form into an extensively branched form, which is not commonly seen in most jellyfish. Jellyfish, also known as medusae, then bud off these polyps and continue their life in a free-swimming form, eventually becoming sexually mature. When sexually mature, they are known to prey on other jellyfish species at a rapid pace. If the T. dohrnii jellyfish is exposed to environmental stress, physical assault, or is sick or old, it can revert to the polyp stage, forming a new polyp colony. It does this through the cell development process of transdifferentiation, which alters the differentiated state of the cells and transforms them into new types of cells.

↑ Return to Menu