Classical Newtonian model in the context of "Relativistic mechanics"

Play Trivia Questions online!

or

Skip to study material about Classical Newtonian model in the context of "Relativistic mechanics"

Ad spacer

⭐ Core Definition: Classical Newtonian model

In physics, classical mechanics is a theory that describes the effect of forces on the motion of macroscopic objects and bulk matter, without considering quantum effects, and often without incorporating relativistic effects either.

It is used in describing the motion of objects such as projectiles, parts of machinery, spacecraft, planets, stars, galaxies, deformable solids, fluids, macromolecules and other objects. The development of classical mechanics involved substantial change in the methods and philosophy of physics. The qualifier classical distinguishes this type of mechanics from new methods developed after the revolutions in physics of the early 20th century which revealed limitations in classical mechanics. Some modern sources include relativistic mechanics in classical mechanics, as representing the subject matter in its most developed and accurate form.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Classical Newtonian model in the context of Classical electrodynamics

Classical electromagnetism or classical electrodynamics is a branch of physics focused on the study of interactions between electric charges and currents using an extension of the classical Newtonian model. It is, therefore, a classical field theory. The theory provides a description of electromagnetic phenomena whenever the relevant length scales and field strengths are large enough that quantum mechanical effects are negligible. For small distances and low field strengths, such interactions are better described by quantum electrodynamics which is a quantum field theory.

↑ Return to Menu