Class (set theory) in the context of "Subclass (set theory)"

Play Trivia Questions online!

or

Skip to study material about Class (set theory) in the context of "Subclass (set theory)"




⭐ Core Definition: Class (set theory)

In set theory and its applications throughout mathematics, a class is a collection of mathematical objects (often sets) that can be unambiguously defined by a property that all its members share. Classes act as a way to have set-like collections while differing from sets so as to avoid paradoxes, especially Russell's paradox (see § Paradoxes). The precise definition of "class" depends on foundational context. In work on Zermelo–Fraenkel set theory, the notion of class is informal, whereas other set theories, such as von Neumann–Bernays–Gödel set theory, axiomatize the notion of "proper class", e.g., as entities that are not members of another entity.

A class that is not a set (informally in Zermelo–Fraenkel) is called a proper class, and a class that is a set is sometimes called a small class. For instance, the class of all ordinal numbers, and the class of all sets, are proper classes in many formal systems.

↓ Menu

In this Dossier

Class (set theory) in the context of Property (philosophy)

In philosophy and logic (especially metaphysics), a property is a characteristic of an object; for example, a red object is said to have the property of redness. The property may be considered a form of object in its own right, able to possess other properties. A property, however, differs from individual objects in that it may be instantiated, and often in more than one object. It differs from the logical and mathematical concept of class by not having any concept of extensionality, and from the philosophical concept of class in that a property is considered to be distinct from the objects which possess it. Understanding how different individual entities (or particulars) can in some sense have some of the same properties is the basis of the problem of universals.

↑ Return to Menu

Class (set theory) in the context of Well-founded

In mathematics, a binary relation R is called well-founded (or wellfounded or foundational) on a set or, more generally, a class X if every non-empty subset (or subclass) SX has a minimal element with respect to R; that is, there exists an mS such that, for every sS, one does not have s R m. More formally, a relation is well-founded if:Some authors include an extra condition that R is set-like, i.e., that the elements less than any given element form a set.

Equivalently, assuming the axiom of dependent choice, a relation is well-founded when it contains no infinite descending chains, meaning there is no infinite sequence x0, x1, x2, ... of elements of X such that xn+1 R xn for every natural number n.

↑ Return to Menu

Class (set theory) in the context of Universe of discourse

In the formal sciences, the domain of discourse or universe of discourse (borrowing from the mathematical concept of universe) is the set of entities over which certain variables of interest in some formal treatment may range.

It is also defined as the collection of objects being discussed in a specific discourse.In model-theoretical semantics, a universe of discourse is the set of entities that a model is based on.

↑ Return to Menu

Class (set theory) in the context of Von Neumann–Bernays–Gödel set theory

In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets. NBG can define classes that are larger than sets, such as the class of all sets and the class of all ordinals. Morse–Kelley set theory (MK) allows classes to be defined by formulas whose quantifiers range over classes. NBG is finitely axiomatizable, while ZFC and MK are not.

A key theorem of NBG is the class existence theorem, which states that for every formula whose quantifiers range only over sets, there is a class consisting of the sets satisfying the formula. This class is built by mirroring the step-by-step construction of the formula with classes. Since all set-theoretic formulas are constructed from two kinds of atomic formulas (membership and equality) and finitely many logical symbols, only finitely many axioms are needed to build the classes satisfying them. This is why NBG is finitely axiomatizable. Classes are also used for other constructions, for handling the set-theoretic paradoxes, and for stating the axiom of global choice, which is stronger than ZFC's axiom of choice.

↑ Return to Menu

Class (set theory) in the context of Family of sets

In set theory and related branches of mathematics, family or collection is used to mean set, indexed set, multiset, tuple, or class. It is usually used in phrases like "family of sets" because if one instead uses "set of sets" then the subsequent use of "set" can be confusing as to whether it is the containing set or one of the member sets. A common use is "family of subsets of some set S". A family of sets is also called a set family or a set system. A finite family of subsets of a finite set is also called a hypergraph. The subject of extremal set theory concerns the largest and smallest examples of families of sets satisfying certain restrictions.

↑ Return to Menu

Class (set theory) in the context of Invariant (mathematics)

In mathematics, an invariant is a property of a mathematical object (or a class of mathematical objects) which remains unchanged after operations or transformations of a certain type are applied to the objects. The particular class of objects and type of transformations are usually indicated by the context in which the term is used. For example, the area of a triangle is an invariant with respect to isometries of the Euclidean plane. The phrases "invariant under" and "invariant to" a transformation are both used. More generally, an invariant with respect to an equivalence relation is a property that is constant on each equivalence class.

Invariants are used in diverse areas of mathematics such as geometry, topology, algebra and discrete mathematics. Some important classes of transformations are defined by an invariant they leave unchanged. For example, conformal maps are defined as transformations of the plane that preserve angles. The discovery of invariants is an important step in the process of classifying mathematical objects.

↑ Return to Menu

Class (set theory) in the context of Universe (mathematics)

In mathematics, and particularly in set theory, category theory, type theory, and the foundations of mathematics, a universe is a collection that contains all the entities one wishes to consider in a given situation.

In set theory, universes are often classes that contain (as elements) all sets for which one hopes to prove a particular theorem. These classes can serve as inner models for various axiomatic systems such as ZFC or Morse–Kelley set theory. Universes are of critical importance to formalizing concepts in category theory inside set-theoretical foundations. For instance, the canonical motivating example of a category is Set, the category of all sets, which cannot be formalized in a set theory without some notion of a universe.

↑ Return to Menu