Class-based programming in the context of Inheritance (object-oriented programming)


Class-based programming in the context of Inheritance (object-oriented programming)

Class-based programming Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Class-based programming in the context of "Inheritance (object-oriented programming)"


⭐ Core Definition: Class-based programming

In programming, a class is a syntactic entity structure used to create objects. The capabilities of a class differ between programming languages, but generally the shared aspects consist of state (variables) and behavior (methods) that are each either associated with a particular object or with all objects of that class.

Object state can differ between each instance of the class whereas the class state is shared by all of them. The object methods include access to the object state (via an implicit or explicit parameter that references the object) whereas class methods do not.

↓ Menu
HINT:

In this Dossier

Class-based programming in the context of Object (computer science)

In software development, an object is an entity semantic that has state, behavior, and identity.An object can model some part of reality or can be an invention of the design process whose collaborations with other such objects serve as the mechanisms that provide some higher-level behavior. Put another way, an object represents an individual, identifiable item, unit, or entity, either real or abstract, with a well-defined role in the problem domain.

A programming language can be classified based on its support for objects. A language that provides an encapsulation construct for state, behavior, and identity is classified as object-based. If the language also provides polymorphism and inheritance it is classified as object-oriented. A language that supports creating an object from a class is classified as class-based. A language that supports object creation via a template object is classified as prototype-based.

View the full Wikipedia page for Object (computer science)
↑ Return to Menu

Class-based programming in the context of Superclass (computer science)

In object-oriented programming, inheritance is the mechanism of basing an object or class upon another object (prototype-based inheritance) or class (class-based inheritance), retaining similar implementation. It is also defined as deriving new classes (sub classes) from existing ones such as super class or base class and then forming them into a hierarchy of classes. In most class-based object-oriented languages like C++, an object created through inheritance, a "child object", acquires all the properties and behaviors of the "parent object", with the exception of: constructors, destructors, overloaded operators and friend functions of the base class. Inheritance allows programmers to create classes that are built upon existing classes, to specify a new implementation while maintaining the same behaviors (realizing an interface), to reuse code and to independently extend original software via public classes and interfaces. The relationships of objects or classes through inheritance give rise to a directed acyclic graph.

An inherited class is called a subclass of its parent class or super class. The term inheritance is loosely used for both class-based and prototype-based programming, but in narrow use the term is reserved for class-based programming (one class inherits from another), with the corresponding technique in prototype-based programming being instead called delegation (one object delegates to another). Class-modifying inheritance patterns can be pre-defined according to simple network interface parameters such that inter-language compatibility is preserved.

View the full Wikipedia page for Superclass (computer science)
↑ Return to Menu

Class-based programming in the context of Prototype-based programming

Prototype-based programming is a style of object-oriented programming in which behavior reuse (known as inheritance) is performed via a process of reusing existing objects that serve as prototypes. This model can also be known as prototypal, prototype-oriented, classless, or instance-based programming.

Prototype-based programming uses the process generalized objects, which can then be cloned and extended. Using fruit as an example, a "fruit" object would represent the properties and functionality of fruit in general. A "banana" object would be cloned from the "fruit" object and general properties specific to bananas would be appended. Each individual "banana" object would be cloned from the generic "banana" object. Compare to the class-based paradigm, where a "fruit" class would be extended by a "banana" class.

View the full Wikipedia page for Prototype-based programming
↑ Return to Menu

Class-based programming in the context of Global variable

In computer programming, a global variable is a variable with global scope, meaning that it is visible (hence accessible) throughout the program, unless shadowed. The set of all global variables is known as the global environment or global state. In compiled languages, global variables are generally static variables, whose extent (lifetime) is the entire runtime of the program, though in interpreted languages (including command-line interpreters), global variables are generally dynamically allocated when declared, since they are not known ahead of time.

In some languages, all variables are global, or global by default, while in most modern languages variables have limited scope, generally lexical scope, though global variables are often available by declaring a variable at the top level of the program. In other languages, however, global variables do not exist; these are generally modular programming languages that enforce a module structure, or class-based object-oriented programming languages that enforce a class structure.

View the full Wikipedia page for Global variable
↑ Return to Menu