Circumplanetary dust in the context of "Satellite system (astronomy)"

Play Trivia Questions online!

or

Skip to study material about Circumplanetary dust in the context of "Satellite system (astronomy)"

Ad spacer

⭐ Core Definition: Circumplanetary dust

A ring system is a disc or torus orbiting an astronomical object that is composed of numerous solid bodies such as dust particles, meteoroids, minor planets, moonlets, or stellar objects.

Ring systems are best known as planetary rings, common components of satellite systems around giant planets such as the rings of Saturn, or circumplanetary disks. But they can also be galactic rings and circumstellar discs, belts of minor planets, such as the asteroid belt or Kuiper belt, or rings of interplanetary dust, such as around the Sun at distances of Mercury, Venus, and Earth, in mean motion resonance with these planets. Evidence suggests that ring systems may also be found around other types of astronomical objects, including moons and brown dwarfs.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Circumplanetary dust in the context of Cosmic dust

Cosmic dust – also called extraterrestrial dust, space dust, or star dust – is dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm (100 μm), such as micrometeoroids (<30 μm) and meteoroids (>30 μm). Cosmic dust can be further distinguished by its astronomical location: intergalactic dust, interstellar dust, interplanetary dust (as in the zodiacal cloud), and circumplanetary dust (as in a planetary ring). There are several methods to obtain space dust measurement.

In the Solar System, interplanetary dust causes the zodiacal light. Solar System dust includes comet dust, planetary dust (like from Mars), asteroidal dust, dust from the Kuiper belt, and interstellar dust passing through the Solar System. Thousands of tons of cosmic dust are estimated to reach Earth's surface every year, with most grains having a mass between 10 kg (0.1 pg) and 10 kg (0.1 g). The density of the dust cloud through which the Earth is traveling is approximately 10 dust grains/m.

↑ Return to Menu