Circular symmetry in the context of "Oblate spheroid"

Play Trivia Questions online!

or

Skip to study material about Circular symmetry in the context of "Oblate spheroid"

Ad spacer

⭐ Core Definition: Circular symmetry

In geometry, circular symmetry is a type of continuous symmetry for a planar object that can be rotated by any arbitrary angle and map onto itself.

Rotational circular symmetry is isomorphic with the circle group in the complex plane, or the special orthogonal group SO(2), and unitary group U(1). Reflective circular symmetry is isomorphic with the orthogonal group O(2).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Circular symmetry in the context of Spheroid

A spheroid, also known as an ellipsoid of revolution or rotational ellipsoid, is a quadric surface obtained by rotating an ellipse about one of its principal axes; in other words, an ellipsoid with two equal semi-diameters. A spheroid has circular symmetry.

If the ellipse is rotated about its major axis, the result is a prolate spheroid, elongated like a rugby ball. The American football is similar but has a pointier end than a spheroid could. If the ellipse is rotated about its minor axis, the result is an oblate spheroid, flattened like a lentil or a plain M&M. If the generating ellipse is a circle, the result is a sphere.

↑ Return to Menu

Circular symmetry in the context of Axial symmetry

Axial symmetry is symmetry around an axis or line (geometry). An object is said to be axially symmetric if its appearance is unchanged if transformed around an axis. The main types of axial symmetry are reflection symmetry and rotational symmetry (including circular symmetry for plane figures and cylindrical symmetry for surfaces of revolution). For example, a baseball bat (without trademark or other design), or a plain white tea saucer, looks the same if it is rotated by any angle about the line passing lengthwise through its center, so it is axially symmetric.

Axial symmetry can also be discrete with a fixed angle of rotation, 360°/n for n-fold symmetry.

↑ Return to Menu