Choanoderm in the context of "Pinacoderm"

Play Trivia Questions online!

or

Skip to study material about Choanoderm in the context of "Pinacoderm"

Ad spacer

⭐ Core Definition: Choanoderm

The choanoderm is a type of cell layer composed of flagellated collar cells, or choanocytes, found in sponges. The sponge body is mostly a connective tissue; the mesohyl, over which are applied epithelioid monolayers of cells, the outer pinacoderm and the inner choanoderm.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Choanoderm in the context of Choanocyte

Choanocytes (also known as "collar cells") are cells that line the interior of asconoid, syconoid and leuconoid body types of sponges that contain a central flagellum, or cilium, surrounded by a collar of microvilli which are connected by a thin membrane.

They make up the choanoderm, a type of cell layer found in sponges. The cell has the closest resemblance to the choanoflagellates which are the closest related single celled protists to the animal kingdom (metazoans). The flagellae beat regularly, creating a water flow across the microvilli which can then filter nutrients from the water taken from the collar of the sponge. Food particles are then phagocytosed by the cell.

↑ Return to Menu

Choanoderm in the context of Mesohyl

The mesohyl, formerly known as mesenchyme or as mesoglea, is the gelatinous matrix within a sponge. It fills the space between the external pinacoderm and the internal choanoderm. The mesohyl resembles a type of connective tissue and contains several amoeboid cells such as amebocytes, as well as fibrils and skeletal elements. For a long time, it has been largely accepted that sponges lack true tissue, but it is currently debated as to whether mesohyl and pinacoderm layers are tissues.

The mesohyl is composed of the following main elements: collagen, fibronectin-like molecules, galectin, and a minor component, dermatopontin. These polypeptides form the extracellular matrix which provides the platform for specific cell adhesion as well as for signal transduction and cellular growth.

↑ Return to Menu