Chirality in the context of "Plane figure"

Play Trivia Questions online!

or

Skip to study material about Chirality in the context of "Plane figure"

Ad spacer

⭐ Core Definition: Chirality

Chirality (/kˈrælɪti/) is the property of an object not being identical to its mirror image. An object is chiral if it is not identical to its mirror image; that is, it cannot be superposed (not to be confused with superimposed) onto it. Conversely, an object is achiral (sometimes also amphichiral) if its mirror image cannot be distinguished from the object (i.e. can be superposed onto its mirror image), such as a sphere. A chiral object and its mirror image are called enantiomorphs (Greek, "opposite forms") or, when referring to molecules, enantiomers. Chirality is a property of asymmetry important in several branches of science.

Human hands are perhaps the most recognized example of chirality. The left hand is a non-superposable mirror image of the right hand; no matter how the two hands are oriented, it is impossible for all the major features of both hands to coincide across all axes. This difference in symmetry becomes obvious if someone attempts to shake the right hand of a person using their left hand, or if a left-handed glove is placed on a right hand.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Chirality in the context of Shape

A shape is a graphical representation of an object's form or its external boundary, outline, or external surface. It is distinct from other object properties, such as color, texture, or material type.In geometry, shape excludes information about the object's position, size, orientation and chirality.A figure is a representation including both shape and size (as in, e.g., figure of the Earth).

A plane shape or plane figure is constrained to lie on a plane, in contrast to solid 3D shapes.A two-dimensional shape or two-dimensional figure (also: 2D shape or 2D figure) may lie on a more general curved surface (a two-dimensional space).

↑ Return to Menu

Chirality in the context of Acoustic lens

Acoustic metamaterials, sometimes referred to as sonic or phononic crystals, are architected materials designed to manipulate sound waves or phonons in gases, liquids, and solids. By tailoring effective parameters such as bulk modulus (β), density (ρ), and in some cases chirality, they can be engineered to transmit, trap, or attenuate waves at selected frequencies, functioning as acoustic resonators when local resonances dominate. Within the broader field of mechanical metamaterials, acoustic metamaterials represent the dynamic branch where wave control is the primary goal. They have been applied to model large-scale phenomena such as seismic waves and earthquake mitigation, as well as small-scale phenomena such as phonon behavior in crystals through band-gap engineering. This band-gap behavior mirrors the electronic band gaps in solids, enabling analogies between acoustic and quantum systems and supporting research in optomechanics and quantum technologies. In mechanics, acoustic metamaterials are particularly relevant for designing structures that mitigate vibrations, shield against blasts, or manipulate wave propagation in civil and aerospace systems.

↑ Return to Menu

Chirality in the context of Murray Gell-Mann

Murray Gell-Mann (/ˈmʌri ˈɡɛl ˈmæn/; September 15, 1929 – May 24, 2019) was an American theoretical physicist who played a preeminent role in the development of the theory of elementary particles. Gell-Mann introduced the concept of quarks as the fundamental building blocks of the strongly interacting particles, and the renormalization group as a foundational element of quantum field theory and statistical mechanics. Murray Gell-Mann received the 1969 Nobel Prize in Physics for his contributions and discoveries concerning the classification of elementary particles and their interactions.

Gell-Mann played key roles in developing the concept of chirality in the theory of the weak interactions and spontaneous chiral symmetry breaking in the strong interactions, which controls the physics of the light mesons. In the 1970s he was a co-inventor of quantum chromodynamics (QCD) which explains the confinement of quarks in mesons and baryons and forms a large part of the Standard Model of elementary particles and forces.

↑ Return to Menu

Chirality in the context of Proarticulata

Proarticulata (also known as Dickinsoniomorpha) is a phylum of extinct, near-bilaterally symmetrical animals known from fossils found in the Ediacaran (Vendian) marine deposits, and dates to approximately 567 to 550 million years ago. The name comes from the Greek προ (pro-) = "before" and Articulata, i.e. prior to animals with true segmentation such as annelids and arthropods. This phylum was established by Mikhail A. Fedonkin in 1985 for such animals as Dickinsonia, Vendia, Cephalonega, Praecambridium and currently many other Proarticulata are described (see list).

Due to their simplistic morphology, their affinities and mode of life are subject to debate. They are almost universally considered to be metazoans, and due to possessing a clear central axis have been suggested to be stem-bilaterians. In the traditional interpretation, the Proarticulatan body is divided into transverse articulation (division) into isomers as distinct from the transverse articulation segments in annelids and arthropods, as their individual isomers occupy only half the width of their bodies, and are organized in an alternating pattern along the longitudinal axis of their bodies. In other words, one side is not the direct mirror image of its opposite (chirality). Opposite isomers of left and right side are located with displacement of half of their width. This phenomenon is described as the symmetry of gliding reflection. Some recent research suggests that some proarticulatans like Dickinsonia have genuine segments, and the isomerism is superficial and due to taphonomic distortion. However, other researchers dispute this. Displacement of left-right axis is known in bilaterians, notably lancelets.

↑ Return to Menu