Chiral anomaly in the context of "Chiral symmetry breaking"

Play Trivia Questions online!

or

Skip to study material about Chiral anomaly in the context of "Chiral symmetry breaking"




⭐ Core Definition: Chiral anomaly

In theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. Such events are expected to be prohibited according to classical conservation laws, but it is known there must be ways they can be broken, because we have evidence of charge–parity non-conservation ("CP violation"). It is possible that other imbalances have been caused by breaking of a chiral law of this kind. Many physicists suspect that the fact that the observable universe contains more matter than antimatter is caused by a chiral anomaly. Chiral symmetry breaking, which breaks chirality symmetry for fermions, can also happen without CP violation, which causes mass gaps between mesons in quantum chromodynamics.

↓ Menu

In this Dossier

Chiral anomaly in the context of Proton decay

Proton decay is the hypothetical decay of a proton into lighter subatomic particles, such as a neutral pion and a positron. The proton decay hypothesis was first formulated by Andrei Sakharov in 1967. Despite significant experimental effort, proton decay has never been observed. If it does decay via a positron, the proton's half-life is constrained to be at least 1.67×10 years.

According to the Standard Model, the proton, a type of baryon, is stable because baryon number (quark number) is conserved (under normal circumstances; see Chiral anomaly for an exception). Therefore, protons will not decay into other particles on their own, because they are the lightest (and therefore least energetic) baryon. Positron emission and electron capture—forms of radioactive decay in which a proton becomes a neutron—are not proton decay, since the proton interacts with other particles within the atom.

↑ Return to Menu