Chemical properties in the context of "Catalysis"

Play Trivia Questions online!

or

Skip to study material about Chemical properties in the context of "Catalysis"

Ad spacer

⭐ Core Definition: Chemical properties

A chemical property is any of a material's properties that becomes evident during, or after, a chemical reaction; that is, any attribute that can be established only by changing a substance's chemical identity. Simply speaking, chemical properties cannot be determined just by viewing or touching the substance; the substance's internal structure must be affected greatly for its chemical properties to be investigated. When a substance goes under a chemical reaction, the properties will change drastically, resulting in chemical change. However, a catalytic property would also be a chemical property.

Chemical properties can be contrasted with physical properties, which can be discerned without changing the substance's structure. However, for many properties within the scope of physical chemistry, and other disciplines at the boundary between chemistry and physics, the distinction may be a matter of researcher's perspective. Material properties, both physical and chemical, can be viewed as supervenient; i.e., secondary to the underlying reality. Several layers of superveniency are possible.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Chemical properties in the context of Early thermal weapons

Early thermal weapons, which used heat or burning action to destroy or damage enemy personnel, fortifications or territories, were employed in warfare during the ancient and post-classical periods (approximately the 8th century BC until the mid-16th century AD).

Incendiary devices were frequently used as projectiles during warfare, particularly during sieges and naval battles: some substances were boiled or heated to inflict damage by scalding or burning; other substances relied on their chemical properties to inflict burns or damage. These weapons or devices could be used by individuals, thrown by siege engines, or utilised as army strategy. Incendiary mixtures, such as the petroleum-based Greek fire, could be launched by throwing machines or administered through a siphon. Sulfur- and oil-soaked materials were sometimes ignited and thrown at the enemy, or attached to spears, arrows and bolts and fired by hand or machine.

↑ Return to Menu

Chemical properties in the context of Electron

The electron (e
, or β
in nuclear reactions) is a subatomic particle whose electric charge is negative one elementary charge. It is an elementary particle that comprises the ordinary matter that makes up the universe, along with up and down quarks.

Electrons are extremely lightweight particles. In atoms, an electron's matter wave occupies atomic orbitals around a positively charged atomic nucleus. The configuration and energy levels of an atom's electrons determine the atom's chemical properties. Electrons are bound to the nucleus to different degrees. The outermost or valence electrons are the least tightly bound and are responsible for the formation of chemical bonds between atoms to create molecules and crystals. These valence electrons also facilitate all types of chemical reactions by being transferred or shared between atoms. The inner electron shells make up the atomic core.

↑ Return to Menu

Chemical properties in the context of Chemist

A chemist (from Greek chēm(ía) alchemy; replacing chymist from Medieval Latin alchemist) is a graduated scientist trained in the study of chemistry, or an officially enrolled student in the field. Chemists study the composition of matter and its properties. Chemists carefully describe the properties they study in terms of quantities, with detail on the level of molecules and their component atoms. Chemists carefully measure substance proportions, chemical reaction rates, and other chemical properties. In Commonwealth English, pharmacists are often called chemists.

Chemists use their knowledge to learn the composition and properties of unfamiliar substances, as well as to reproduce and synthesize large quantities of useful naturally occurring substances and create new artificial substances and useful processes. Chemists may specialize in any number of subdisciplines of chemistry. Materials scientists and metallurgists share much of the same education and skills with chemists. The work of chemists is often related to the work of chemical engineers, who are primarily concerned with the proper design, construction and evaluation of the most cost-effective large-scale chemical plants and work closely with industrial chemists on the development of new processes and methods for the commercial-scale manufacture of chemicals and related products.

↑ Return to Menu