Chemical burn in the context of Chemical weapon


Chemical burn in the context of Chemical weapon

Chemical burn Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Chemical burn in the context of "Chemical weapon"


⭐ Core Definition: Chemical burn

A chemical burn occurs when living tissue is exposed to a corrosive substance (such as a strong acid, base or oxidizer) or a cytotoxic agent (such as mustard gas, lewisite or arsine). Chemical burns follow standard burn classification and may cause extensive tissue damage. The main types of irritant and/or corrosive products are: acids, bases, oxidizers and reducing agents, solvents, and alkylants. Additionally, chemical burns can be caused by biological toxins (such as anthrax toxin) and by some types of cytotoxic chemical weapons, e.g., vesicants such as mustard gas and Lewisite, or urticants such as phosgene oxime.

↓ Menu
HINT:

In this Dossier

Chemical burn in the context of Sodium hydroxide

Sodium hydroxide, also known as lye and caustic soda, is an inorganic compound with the formula NaOH. It is a white solid ionic compound consisting of sodium cations Na and hydroxide anions OH.

Sodium hydroxide is a highly corrosive base and alkali that decomposes lipids and proteins at ambient temperatures, and may cause severe chemical burns at high concentrations. It is highly soluble in water, and readily absorbs moisture and carbon dioxide from the air. It forms a series of hydrates NaOH·nH2O. The monohydrate NaOH·H2O crystallizes from water solutions between 12.3 and 61.8 °C. The commercially available "sodium hydroxide" is often this monohydrate, and published data may refer to it instead of the anhydrous compound.

View the full Wikipedia page for Sodium hydroxide
↑ Return to Menu

Chemical burn in the context of Sulfuric acid

Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid (Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen, and hydrogen, with the molecular formula H2SO4. It is a colorless, odorless, and viscous liquid that is miscible with water.

Pure sulfuric acid does not occur naturally due to its strong affinity to water vapor; it is hygroscopic and readily absorbs water vapor from the air. Concentrated sulfuric acid is a strong oxidant with powerful dehydrating properties, making it highly corrosive towards other materials, from rocks to metals. Phosphorus pentoxide is a notable exception in that it is not dehydrated by sulfuric acid but, to the contrary, dehydrates sulfuric acid to sulfur trioxide. Upon addition of sulfuric acid to water, a considerable amount of heat is released; thus, the reverse procedure of adding water to the acid is generally avoided since the heat released may boil the solution, spraying droplets of hot acid during the process. Upon contact with body tissue, sulfuric acid can cause severe acidic chemical burns and secondary thermal burns due to dehydration. Dilute sulfuric acid is substantially less hazardous without the oxidative and dehydrating properties; though, it is handled with care for its acidity.

View the full Wikipedia page for Sulfuric acid
↑ Return to Menu

Chemical burn in the context of Piranha solution

Piranha solution, also known as piranha etch, is a mixture of sulfuric acid (H2SO4) and hydrogen peroxide (H2O2). The resulting mixture is used to clean organic residues off substrates, for example silicon wafers. Because the mixture is a strong oxidizing agent, it will decompose most organic matter, and it will also hydroxylate most surfaces (by adding –OH groups), making them highly hydrophilic (water-compatible). This means the solution can also easily dissolve fabric and skin, potentially causing severe damage and chemical burns in case of inadvertent contact. It is named after the piranha fish due to its tendency to rapidly dissolve and 'consume' organic materials through vigorous chemical reactions.

View the full Wikipedia page for Piranha solution
↑ Return to Menu

Chemical burn in the context of Base anhydride

A base anhydride is an oxide of a chemical element from group 1 or 2 (the alkali metals and alkaline earth metals, respectively). They are obtained by removing water from the corresponding hydroxide base. If water is added to a base anhydride, a corresponding hydroxide salt can be [re]-formed.

Base anhydrides are Brønsted–Lowry bases because they are proton acceptors. In addition, they are Lewis bases, because they will share an electron pair with some Lewis acids, most notably acidic oxides. They are potent alkalis and will produce alkali burns on skin, because their affinity for water (that is, their affinity for being slaked) makes them react with body water.

View the full Wikipedia page for Base anhydride
↑ Return to Menu

Chemical burn in the context of Phenol

Phenol (also known as carbolic acid, phenolic acid, or benzenol) is an aromatic organic compound with the molecular formula C6H5OH. It is a white crystalline solid that is volatile and can catch fire.

The molecule consists of a phenyl group (−C6H5) bonded to a hydroxy group (−OH). Mildly acidic, it requires careful handling because it can cause chemical burns. It is acutely toxic and is considered a health hazard.

View the full Wikipedia page for Phenol
↑ Return to Menu