Charging station in the context of Power supply


Charging station in the context of Power supply

Charging station Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Charging station in the context of "Power supply"


⭐ Core Definition: Charging station

A charging station, also known as a charge point, chargepoint, or electric vehicle supply equipment (EVSE), is a power supply device that supplies electrical power for recharging the on-board battery packs of plug-in electric vehicles (including battery electric vehicles, electric trucks, electric buses, neighborhood electric vehicles, and plug-in hybrid vehicles).

There are two main types of EV chargers: alternating current (AC) charging stations and direct current (DC) charging stations. Electric vehicle batteries can only be charged by direct current electricity, while most mains electricity is delivered from the power grid as alternating current. For this reason, most electric vehicles have a built-in AC-to-DC converter commonly known as the "on-board charger" (OBC). At an AC charging station, AC power from the grid is supplied to this onboard charger, which converts it into DC power to recharge the battery. DC chargers provide higher-power charging (which requires much larger AC-to-DC converters) by building the converter into the charging station to avoid size, weight and cost restrictions inside vehicles. The station then directly supplies DC power to the vehicle, bypassing the onboard converter. Most modern electric vehicles can accept both AC and DC power.

↓ Menu
HINT:

In this Dossier

Charging station in the context of Automobile engine

There are a wide variety of propulsion systems available or potentially available for automobiles and other vehicles. Options included internal combustion engines fueled by petrol, diesel, propane, or natural gas; hybrid vehicles, plug-in hybrids, fuel cell vehicles fueled by hydrogen and all electric cars. Fueled vehicles seem to have the advantage due to the limited range and high cost of batteries. Some options required construction of a network of fueling or charging stations. With no compelling advantage for any particular option, car makers pursued parallel development tracks using a variety of options. Reducing the weight of vehicles was one strategy being employed.

View the full Wikipedia page for Automobile engine
↑ Return to Menu

Charging station in the context of Battery electric vehicle

A battery electric vehicle (BEV), pure electric vehicle, only-electric vehicle, fully electric vehicle or all-electric vehicle is a type of electric vehicle (EV) that uses electrical energy exclusively from an on-board battery pack to power one or more electric traction motors, on which the vehicle solely relies for propulsion.

This definition excludes hybrid electric vehicles (HEVs; including mild, full and plug-in hybrids), which use internal combustion engines (ICEs) in adjunct to electric motors for propulsion; and fuel cell electric vehicles (FCEVs) and range-extended electric vehicles (REEVs), which consume fuel through a fuel cell or an ICE-driven generator to produce electricity needed for the electric motors. BEVs have no fuel tanks and replenish their energy storage by plugging into a charging station, electrical grid or getting a new battery at a battery swap station, and use motor controllers to modulate the output engine power and torque, thus eliminating the need for clutches, transmissions and sophisticated engine cooling as seen in conventional ICE vehicles. BEVs include – but are not limited to – all battery-driven electric cars, buses, trucks, forklifts, motorcycles and scooters, bicycles, skateboards, railcars, boat and personal watercraft, although in common usage the term usually refers specifically to passenger cars.

View the full Wikipedia page for Battery electric vehicle
↑ Return to Menu