Cerebral cortex in the context of "Attention"

Play Trivia Questions online!

or

Skip to study material about Cerebral cortex in the context of "Attention"

Ad spacer

⭐ Core Definition: Cerebral cortex

The cerebral cortex, also known as the cerebral mantle, is the outer layer of neural tissue of the cerebrum of the brain in humans and other mammals. It is the largest site of neural integration in the central nervous system, and plays a key role in attention, perception, awareness, thought, memory, language, and consciousness.

The six-layered neocortex makes up approximately 90% of the cortex, with the allocortex making up the remainder. The cortex is divided into left and right parts by the longitudinal fissure, which separates the two cerebral hemispheres that are joined beneath the cortex by the corpus callosum and other commissural fibers. In most mammals, apart from small mammals that have small brains, the cerebral cortex is folded, providing a greater surface area in the confined volume of the cranium. Apart from minimising brain and cranial volume, cortical folding is crucial for the brain circuitry and its functional organisation. In mammals with small brains, there is no folding and the cortex is smooth.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Cerebral cortex in the context of Human brain

The human brain is the central organ of the nervous system, and with the spinal cord, comprises the central nervous system. It consists of the cerebrum, the brainstem and the cerebellum. The brain controls most of the activities of the body, processing, integrating, and coordinating the information it receives from the sensory nervous system. The brain integrates sensory information and coordinates instructions sent to the rest of the body.

The cerebrum, the largest part of the human brain, consists of two cerebral hemispheres. Each hemisphere has an inner core composed of white matter, and an outer surface – the cerebral cortex – composed of grey matter. The cortex has an outer layer, the neocortex, and an inner allocortex. The neocortex is made up of six neuronal layers, while the allocortex has three or four. Each hemisphere is divided into four lobes – the frontal, parietal, temporal, and occipital lobes. The frontal lobe is associated with executive functions including self-control, planning, reasoning, and abstract thought, while the occipital lobe is dedicated to vision. Within each lobe, cortical areas are associated with specific functions, such as the sensory, motor, and association regions. Although the left and right hemispheres are broadly similar in shape and function, some functions are associated with one side, such as language in the left and visual-spatial ability in the right. The hemispheres are connected by commissural nerve tracts, the largest being the corpus callosum.

↑ Return to Menu

Cerebral cortex in the context of Sense

A sense is a biological system used by an organism for sensation, the process of gathering information about the surroundings through the detection of stimuli. Although, in some cultures, five human senses were traditionally identified as such (namely sight, smell, touch, taste, and hearing), many more are now recognized. Senses used by non-human organisms are even greater in variety and number. During sensation, sense organs collect various stimuli (such as a sound or smell) for transduction, meaning transformation into a form that can be understood by the brain. Sensation and perception are fundamental to nearly every aspect of an organism's cognition, behavior and thought.

In organisms, a sensory organ consists of a group of interrelated sensory cells that respond to a specific type of physical stimulus. Via cranial and spinal nerves (nerves of the central and peripheral nervous systems that relay sensory information to and from the brain and body), the different types of sensory receptor cells (such as mechanoreceptors, photoreceptors, chemoreceptors, thermoreceptors) in sensory organs transduct sensory information from these organs towards the central nervous system, finally arriving at the sensory cortices in the brain, where sensory signals are processed and interpreted (perceived).

↑ Return to Menu

Cerebral cortex in the context of Cognitive neuroscience

Cognitive neuroscience is the scientific field that is concerned with the study of the biological processes and aspects that underlie cognition, with a specific focus on the neural connections in the brain which are involved in mental processes. It addresses the questions of how cognitive activities are affected or controlled by neural circuits in the brain. Cognitive neuroscience is a branch of both neuroscience and psychology, overlapping with disciplines such as behavioral neuroscience, cognitive psychology, physiological psychology and affective neuroscience. Cognitive neuroscience relies upon theories in cognitive science coupled with evidence from neurobiology, and computational modeling.

Parts of the brain play an important role in this field. Neurons play the most vital role, since the main point is to establish an understanding of cognition from a neural perspective, along with the different lobes of the cerebral cortex.

↑ Return to Menu

Cerebral cortex in the context of Cerebrum

The cerebrum (pl.: cerebra), telencephalon or endbrain is the largest part of the brain, containing the cerebral cortex (of the two cerebral hemispheres) as well as several subcortical structures, including the hippocampus, basal ganglia, and olfactory bulb. In the human brain, the cerebrum is the uppermost region of the central nervous system. The cerebrum develops prenatally from the forebrain (prosencephalon). In mammals, the dorsal telencephalon, or pallium, develops into the cerebral cortex, and the ventral telencephalon, or subpallium, becomes the basal ganglia. The cerebrum is also divided into approximately symmetric left and right cerebral hemispheres.

With the assistance of the cerebellum, the cerebrum controls all voluntary actions in the human body.

↑ Return to Menu

Cerebral cortex in the context of Cerebellum

The cerebellum (pl.: cerebella or cerebellums; Latin for 'little brain') is a major feature of the hindbrain of all vertebrates. Although usually smaller than the cerebrum, in some animals such as the mormyrid fishes it may be as large as it or even larger. In humans, the cerebellum plays an important role in motor control and cognitive functions such as attention and language as well as emotional control such as regulating fear and pleasure responses, but its movement-related functions are the most solidly established. The human cerebellum does not initiate movement, but contributes to coordination, precision, and accurate timing: it receives input from sensory systems of the spinal cord and from other parts of the brain, and integrates these inputs to fine-tune motor activity. Cerebellar damage produces disorders in fine movement, equilibrium, posture, and motor learning in humans.

Anatomically, the human cerebellum has the appearance of a separate structure attached to the bottom of the brain, tucked underneath the cerebral hemispheres. Its cortical surface is covered with finely spaced parallel grooves, in striking contrast to the broad irregular convolutions of the cerebral cortex. These parallel grooves conceal the fact that the cerebellar cortex is actually a thin, continuous layer of tissue tightly folded in the style of an accordion. Within this thin layer are several types of neurons with a highly regular arrangement, the most important being Purkinje cells and granule cells. This complex neural organization gives rise to a massive signal-processing capability, but almost all of the output from the cerebellar cortex passes through a set of small deep nuclei lying in the white matter interior of the cerebellum.

↑ Return to Menu

Cerebral cortex in the context of Cerebral hemisphere

The cerebrum, or the largest part of the vertebrate brain, is made up of two cerebral hemispheres. The deep groove known as the longitudinal fissure divides the cerebrum into the left and right hemispheres, but the hemispheres remain united by the corpus callosum, a large bundle of nerve fibers in the middle of the brain whose primary function is to integrate sensory and motor signals between the hemispheres. In eutherian (placental) mammals, other bundles of nerve fibers like the corpus callosum exist, including the anterior commissure, the posterior commissure, and the fornix, but compared with the corpus callosum, they are much smaller in size.

Broadly, the hemispheres are made up of two types of tissues. The thin outer layer of the cerebral hemispheres is made up of gray matter, composed of neuronal cell bodies, dendrites, and synapses; this outer layer constitutes the cerebral cortex (cortex is Latin for "bark of a tree"). Below that is the larger inner layer of white matter, composed of axons and myelin.

↑ Return to Menu

Cerebral cortex in the context of Neocortex

The neocortex, also called the neopallium, isocortex or six-layered cortex, is a set of layers of the mammalian cerebral cortex involved in higher-order brain functions such as sensory perception, cognition, generation of motor commands, spatial reasoning, and language. The neocortex is further subdivided into the true isocortex and the proisocortex.

In the human brain, the cerebral cortex consists of the larger neocortex and the smaller allocortex, respectively taking up 90% and 10%. The neocortex is made up of six layers, labelled from the outermost inwards, I to VI.

↑ Return to Menu

Cerebral cortex in the context of Allocortex

The allocortex (from Latin allo-, meaning other, and cortex, meaning bark or crust), or heterogenetic cortex, is one of the two types of cerebral cortex in the brain, together with the neocortex. In the human brain, the allocortex is the much smaller area of cortex taking up just 10%; the neocortex takes up the remaining 90%. It is characterized by having just three cortical layers (one main neural layer), in contrast with the six cortical layers of the neocortex. There are three subtypes of allocortex: the paleocortex, the archicortex, and the periallocortex—a transitional zone between the neocortex and the allocortex.

The specific regions of the brain usually described as belonging to the allocortex are the olfactory system and the hippocampus.

↑ Return to Menu