Cell–cell recognition in the context of Cellular biology


Cell–cell recognition in the context of Cellular biology

Cell–cell recognition Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Cell–cell recognition in the context of "Cellular biology"


⭐ Core Definition: Cell–cell recognition

In cellular biology, cell–cell recognition is a cell's ability to distinguish one type of neighboring cell from another. This phenomenon occurs when complementary molecules on opposing cell surfaces meet. A receptor on one cell surface binds to its specific ligand on a nearby cell, initiating a cascade of events which regulate cell behaviors ranging from simple adhesion to complex cellular differentiation. Like other cellular functions, cell–cell recognition is impacted by detrimental mutations in the genes and proteins involved and is subject to error. The biological events that unfold due to cell–cell recognition are important for animal development, microbiomes, and human medicine.

↓ Menu
HINT:

In this Dossier

Cell–cell recognition in the context of Glycocalyx

The glycocalyx is a microscopic, hair-like coating which covers the outer surface of virtually all cells, and plays a critical role in most signalling between cells and their surrounding environments. It is composed of branching biomolecules like proteins and lipids sometimes longer than the cell's own diameter, with various sugars covalently bound to them at particular locations.

The glycocalyx (pl.: glycocalyces or glycocalyxes), also known as the pericellular matrix and cell coat, is an external organelle consisting of a layer of glycosylated biomolecules called glycoconjugates, such as glycoproteins and glycolipids. These are embedded in and extend outwards from the cell membranes of virtually all cells. Generally, the carbohydrate portion of the glycolipids found on the surface of plasma membranes helps these molecules contribute to cell–cell recognition, communication, and intercellular adhesion.

View the full Wikipedia page for Glycocalyx
↑ Return to Menu

Cell–cell recognition in the context of Glycoconjugate

In molecular biology and biochemistry, glycoconjugates are a subfamily for carbohydrates where saccharides are covalently linked with proteins, peptides, lipids. Glycoconjugates are formed in processes termed glycosylation. Glycoconjugates are involved in cell–cell interactions, including cell–cell recognition; in cell–matrix interactions; and in detoxification processes.

Although the important molecular species DNA, RNA, ATP, cAMP, cGMP, NADH, NADPH, and coenzyme A all contain a carbohydrate part, generally they are not considered as glycoconjugates.

View the full Wikipedia page for Glycoconjugate
↑ Return to Menu

Cell–cell recognition in the context of Oligosaccharide

An oligosaccharide (/ˌɒlɪɡˈsækəˌrd/; from Ancient Greek ὀλίγος (olígos) 'few' and σάκχαρ (sákkhar) 'sugar') is a saccharide polymer containing a small number (typically three to ten) of monosaccharides (simple sugars). Oligosaccharides can have many functions including cell recognition and cell adhesion.

They are normally present as glycans: oligosaccharide chains are linked to lipids or to compatible amino acid side chains in proteins, by N- or O-glycosidic bonds. N-Linked oligosaccharides are always pentasaccharides attached to asparagine via a beta linkage to the amine nitrogen of the side chain. Alternately, O-linked oligosaccharides are generally attached to threonine or serine on the alcohol group of the side chain. Not all natural oligosaccharides occur as components of glycoproteins or glycolipids. Some, such as the raffinose series, occur as storage or transport carbohydrates in plants. Others, such as maltodextrins or cellodextrins, result from the microbial breakdown of larger polysaccharides such as starch or cellulose.

View the full Wikipedia page for Oligosaccharide
↑ Return to Menu