Celestial coordinate system in the context of Greenwich Mean Sidereal Time


Celestial coordinate system in the context of Greenwich Mean Sidereal Time

Celestial coordinate system Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Celestial coordinate system in the context of "Greenwich Mean Sidereal Time"


⭐ Core Definition: Celestial coordinate system

In astronomy, coordinate systems are used for specifying positions of celestial objects (satellites, planets, stars, galaxies, etc.) relative to a given reference frame, based on physical reference points available to a situated observer (e.g. the true horizon and north to an observer on Earth's surface). Coordinate systems in astronomy can specify an object's relative position in three-dimensional space or plot merely by its direction on a celestial sphere, if the object's distance is unknown or trivial.

Spherical coordinates, projected on the celestial sphere, are analogous to the geographic coordinate system used on the surface of Earth. These differ in their choice of fundamental plane, which divides the celestial sphere into two equal hemispheres along a great circle. Rectangular coordinates, in appropriate units, have the same fundamental (x, y) plane and primary (x-axis) direction, such as an axis of rotation. Each coordinate system is named after its choice of fundamental plane.

↓ Menu
HINT:

In this Dossier

Celestial coordinate system in the context of Celestial sphere

In astronomy and navigation, the celestial sphere is an abstract sphere that has an arbitrarily large radius and is concentric to Earth. All objects in the sky can be conceived as being projected upon the inner surface of the celestial sphere, which may be centered on Earth or the observer. If centered on the observer, half of the sphere would resemble a hemispherical screen over the observing location.

The celestial sphere is a conceptual tool used in spherical astronomy to specify the position of an object in the sky without consideration of its linear distance from the observer. The celestial equator divides the celestial sphere into northern and southern hemispheres.

View the full Wikipedia page for Celestial sphere
↑ Return to Menu

Celestial coordinate system in the context of Right ascension

Right ascension (abbreviated RA; symbol α) is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the March equinox to the (hour circle of the) point in question above the Earth. When paired with declination, these astronomical coordinates specify the location of a point on the celestial sphere in the equatorial coordinate system.

An old term, right ascension (Latin: ascensio recta) refers to the ascension, or the point on the celestial equator that rises with any celestial object as seen from Earth's equator, where the celestial equator intersects the horizon at a right angle. It contrasts with oblique ascension, the point on the celestial equator that rises with any celestial object as seen from most latitudes on Earth, where the celestial equator intersects the horizon at an oblique angle.

View the full Wikipedia page for Right ascension
↑ Return to Menu

Celestial coordinate system in the context of Sidereal day

Sidereal time ("sidereal" pronounced /sˈdɪəriəl, sə-/ sy-DEER-ee-əl, sə-) is a system of timekeeping used especially by astronomers. Using sidereal time and the celestial coordinate system, it is easy to locate the positions of celestial objects in the night sky. Sidereal time is a "time scale that is based on Earth's rate of rotation measured relative to the fixed stars". A sidereal day (also known as the sidereal rotation period) represents the time for one rotation about the planet axis relative to the stars.

Viewed from the same location, a star seen at one position in the sky will be seen at the same position on another night at the same time of day (or night), if the day is defined as a sidereal day. This is similar to how the time kept by a sundial (Solar time) can be used to find the location of the Sun. Just as the Sun and Moon appear to rise in the east and set in the west due to the rotation of Earth, so do the stars. Both solar time and sidereal time make use of the regularity of Earth's rotation about its polar axis: solar time is reckoned according to the position of the Sun in the sky while sidereal time is based approximately on the position of the fixed stars on the theoretical celestial sphere.

View the full Wikipedia page for Sidereal day
↑ Return to Menu

Celestial coordinate system in the context of Equatorial coordinate system

The equatorial coordinate system is a celestial coordinate system widely used to specify the positions of celestial objects. It may be implemented in spherical or rectangular coordinates, both defined by an origin at the centre of Earth, a fundamental plane consisting of the projection of Earth's equator onto the celestial sphere (forming the celestial equator), a primary direction towards the March equinox, and a right-handed convention.

The origin at the centre of Earth means the coordinates are geocentric, that is, as seen from the centre of Earth as if it were transparent. The fundamental plane and the primary direction mean that the coordinate system, while aligned with Earth's equator and pole, does not rotate with the Earth, but remains relatively fixed against the background stars. A right-handed convention means that coordinates increase northward from and eastward around the fundamental plane.

View the full Wikipedia page for Equatorial coordinate system
↑ Return to Menu

Celestial coordinate system in the context of GoTo telescope

In amateur astronomy, "GoTo" refers to a type of telescope mount and related software that can automatically point a telescope at astronomical objects that the user selects. Both axes of a GoTo mount are driven by a motor and controlled by a computer. It may be either a microprocessor-based integrated controller or an external personal computer. This differs from the single-axis semi-automated tracking of a traditional clock-drive equatorial mount.

The user can command the mount to point the telescope to the celestial coordinates that the user inputs, or to objects in a pre-programmed database including ones from the Messier catalogue, the New General Catalogue, and even major Solar System bodies (the Sun, Moon, and planets).

View the full Wikipedia page for GoTo telescope
↑ Return to Menu

Celestial coordinate system in the context of Horizontal coordinate system

The horizontal coordinate system is a celestial coordinate system that uses the observer's local horizon as the fundamental plane to define two angles of a spherical coordinate system: altitude and azimuth.Therefore, the horizontal coordinate system is sometimes called the az/el system, the alt/az system, or the alt-azimuth system, among others. In an altazimuth mount of a telescope, the instrument's two axes follow altitude and azimuth.

View the full Wikipedia page for Horizontal coordinate system
↑ Return to Menu

Celestial coordinate system in the context of Equinox (celestial coordinates)

In astronomy, an equinox is either of two places on the celestial sphere at which the ecliptic intersects the celestial equator. Although there are two such intersections, the equinox associated with the Sun's ascending node is used as the conventional origin of celestial coordinate systems and referred to simply as "the equinox". In contrast to the common usage of spring/vernal and autumnal equinoxes, the celestial coordinate system equinox is a direction in space rather than a moment in time.

In a cycle of about 25,800 years, the equinox moves westward with respect to the celestial sphere because of perturbing forces; therefore, in order to define a coordinate system, it is necessary to specify the date for which the equinox is chosen. This date should not be confused with the epoch. Astronomical objects show real movements such as orbital and proper motions, and the epoch defines the date for which the position of an object applies. Therefore, a complete specification of the coordinates for an astronomical object requires both the date of the equinox and of the epoch.

View the full Wikipedia page for Equinox (celestial coordinates)
↑ Return to Menu

Celestial coordinate system in the context of Ecliptic coordinate system

In astronomy, the ecliptic coordinate system is a celestial coordinate system commonly used for representing the apparent positions, orbits, and pole orientations of Solar System objects. Because most planets (except Mercury) and many small Solar System bodies have orbits with only slight inclinations to the ecliptic, using it as the fundamental plane is convenient. The system's origin can be the center of either the Sun or Earth, its primary direction is towards the March equinox, and it has a right-hand convention. It may be implemented in spherical or rectangular coordinates.

View the full Wikipedia page for Ecliptic coordinate system
↑ Return to Menu

Celestial coordinate system in the context of Star position

Star position is the apparent angular position of any given star in the sky, which seems fixed onto an arbitrary sphere centered on Earth. The location is defined by a pair of angular coordinates relative to the celestial equator: right ascension (α) and declination (δ). This pair based the equatorial coordinate system.

While δ is given in degrees (from +90° at the north celestial pole to −90° at the south), α is usually given in hour angles (0 to 24 h). This is due to the observation technique of star transits, which cross the field of view of telescope eyepieces due to Earth's rotation. The observation techniques are topics of positional astronomy and of astrogeodesy.

View the full Wikipedia page for Star position
↑ Return to Menu

Celestial coordinate system in the context of Armillary sphere

An armillary sphere (variations are known as spherical astrolabe, armilla, or armil) is a model of objects in the sky (on the celestial sphere), consisting of a spherical framework of rings, centered on Earth or the Sun, that represent lines of celestial longitude and latitude and other astronomically important features, such as the ecliptic. As such, it differs from a celestial globe, which is a smooth sphere whose principal purpose is to map the constellations. It was invented separately, in ancient China possibly as early as the 4th century BC and ancient Greece during the 3rd century BC, with later uses in the Islamic world and Medieval Europe.

With the Earth as center, an armillary sphere is known as Ptolemaic. With the Sun as center, it is known as Copernican.

View the full Wikipedia page for Armillary sphere
↑ Return to Menu

Celestial coordinate system in the context of Vernal point

The first point of Aries, also known as the cusp of Aries or the vernal point, is the location of the March equinox (the vernal equinox in the northern hemisphere, and the autumnal equinox in the southern), used as a reference point in celestial coordinate systems. In diagrams using such coordinate systems, it is often indicated with the symbol ♈︎. Named for the constellation of Aries, it is one of the two points on the celestial sphere at which the celestial equator crosses the ecliptic, the other being the first point of Libra, located exactly 180° from it. Due to precession of the equinoxes since the positions were originally named in antiquity, the position of the Sun when at the March equinox is now in Pisces; when it is at the September equinox, it is in Virgo (as of J2000).

Along its yearly path through the zodiac, the Sun meets the celestial equator as it travels from south to north at the first point of Aries, and from north to south at the first point of Libra. The first point of Aries is considered to be the celestial "prime meridian" from which right ascension is calculated.

View the full Wikipedia page for Vernal point
↑ Return to Menu