Cations in the context of "Ammonium chloride"

Play Trivia Questions online!

or

Skip to study material about Cations in the context of "Ammonium chloride"

Ad spacer

⭐ Core Definition: Cations

An ion (/ˈ.ɒn, -ən/) is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convention. The net charge of an ion is not zero because its total number of electrons is unequal to its total number of protons.

A cation is a positively charged ion with fewer electrons than protons (e.g. K (potassium ion)) while an anion is a negatively charged ion with more electrons than protons (e.g. Cl (chloride ion) and OH (hydroxide ion)). Opposite electric charges are pulled towards one another by electrostatic force, so cations and anions attract each other and readily form ionic compounds. Ions consisting of only a single atom are termed monatomic ions, atomic ions or simple ions, while ions consisting of two or more atoms are termed polyatomic ions or molecular ions.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Cations in the context of Potassium nitrate

Potassium nitrate is a chemical compound with a sharp, salty, bitter taste and the chemical formula KNO3. It is a potassium salt of nitric acid. This salt consists of potassium cations K and nitrate anions NO3, and is therefore an alkali metal nitrate. It occurs in nature as a mineral, niter (or nitre outside the United States). It is a source of nitrogen, and nitrogen was named after niter. Potassium nitrate is one of several nitrogen-containing compounds collectively referred to as saltpetre (or saltpeter in the United States).

Major uses of potassium nitrate are in fertilizers, tree stump removal, rocket propellants and fireworks. It is one of the major constituents of traditional gunpowder (black powder). In processed meats, potassium nitrate reacts with hemoglobin and myoglobin generating a red color.

↑ Return to Menu

Cations in the context of Ionic bond

Ionic bonding is a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions, or between two atoms with sharply different electronegativities, and is the primary interaction occurring in ionic compounds. It is one of the main types of bonding, along with covalent bonding and metallic bonding. Ions are atoms (or groups of atoms) with an electrostatic charge. Atoms that gain electrons make negatively charged ions (called anions). Atoms that lose electrons make positively charged ions (called cations). This transfer of electrons is known as electrovalence in contrast to covalence. In the simplest case, the cation is a metal atom and the anion is a nonmetal atom, but these ions can be more complex, e.g. polyatomic ions like NH
4
or SO
4
. In simpler words, an ionic bond results from the transfer of electrons from a metal to a non-metal to obtain a full valence shell for both atoms.

Clean ionic bonding – in which one atom or molecule completely transfers an electron to another – cannot exist: all ionic compounds have some degree of covalent bonding or electron sharing. Thus, the term "ionic bonding" is given when the ionic character is greater than the covalent character – that is, a bond in which there is a large difference in electronegativity between the cation and anion, causing the bonding to be more polar (ionic) than in covalent bonding where electrons are shared more equally. Bonds with partially ionic and partially covalent characters are called polar covalent bonds.

↑ Return to Menu

Cations in the context of Ammonium carbonate

Ammonium carbonate is a chemical compound with the chemical formula [NH4]2CO3. It is an ammonium salt of carbonic acid. It is composed of ammonium cations [NH4] and carbonate anions CO2−3. Since ammonium carbonate readily degrades to gaseous ammonia and carbon dioxide upon heating, it is used as a leavening agent and also as smelling salt. It is also known as baker's ammonia and is a predecessor to the more modern leavening agents baking soda and baking powder. It is a component of what was formerly known as sal volatile and salt of hartshorn, and produces a pungent smell when baked. It comes in the form of a white powder or block, with a molar mass of 96.09 g/mol and a density of 1.50 g/cm. It is a strong electrolyte.

↑ Return to Menu

Cations in the context of Alkali metal

The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr). Together with hydrogen they constitute group 1, which lies in the s-block of the periodic table. All alkali metals have their outermost electron in an s-orbital: this shared electron configuration results in them having very similar characteristic properties. Indeed, the alkali metals provide the best example of group trends in properties in the periodic table, with elements exhibiting well-characterised homologous behaviour. This family of elements is also known as the lithium family after its leading element.

The alkali metals are all shiny, soft, highly reactive metals at standard temperature and pressure and readily lose their outermost electron to form cations with charge +1. They can all be cut easily with a knife due to their softness, exposing a shiny surface that tarnishes rapidly in air due to oxidation by atmospheric moisture and oxygen (and in the case of lithium, nitrogen). Because of their high reactivity, they must be stored under oil to prevent reaction with air, and are found naturally only in salts and never as the free elements. Caesium, the fifth alkali metal, is the most reactive of all the metals. All the alkali metals react with water, with the heavier alkali metals reacting more vigorously than the lighter ones.

↑ Return to Menu

Cations in the context of Potassium carbonate

Potassium carbonate is the inorganic compound with the formula K2CO3. It is a white salt, which is soluble in water and forms a strongly alkaline solution. It is deliquescent, often appearing as a damp or wet solid. Potassium carbonate is used in production of dutch process cocoa powder, production of soap and production of glass. Commonly, it can be found as the result of leakage of alkaline batteries. Potassium carbonate is a potassium salt of carbonic acid. This salt consists of potassium cations K and carbonate anions CO2−3, and is therefore an alkali metal carbonate.

↑ Return to Menu

Cations in the context of Prussian blue

Prussian blue (also known as Berlin blue, Brandenburg blue, Parisian and Paris blue) is a dark blue pigment produced by oxidation of ferrous ferrocyanide salts. It has the chemical formula Fe4[Fe(CN)6]3. It consists of Fe cations, where iron is in the oxidation state of +3, and [Fe(CN)6] anions, where iron is in the oxidation state of +2, so, the other name of this salt is iron(III) hexacyanoferrate(II). Turnbull's blue is essentially identical chemically, excepting that it has different impurities and particle sizes—because it is made from different reagents—and thus it has a slightly different color.

Prussian blue was created in the early 18th century and is the first modern synthetic pigment. It is prepared as a very fine colloidal dispersion, because the compound is not soluble in water. It contains variable amounts of other ions and its appearance depends sensitively on the size of the colloidal particles. The pigment is used in paints, it became prominent in 19th-century aizuri-e (藍摺り絵) Japanese woodblock prints, and it is the traditional "blue" in technical blueprints.

↑ Return to Menu