Cartesian coordinates in the context of "Bound vector"

Play Trivia Questions online!

or

Skip to study material about Cartesian coordinates in the context of "Bound vector"

Ad spacer

⭐ Core Definition: Cartesian coordinates

In geometry, a Cartesian coordinate system (UK: /kɑːrˈtzjən/, US: /kɑːrˈtʒən/) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, called coordinate lines, coordinate axes or just axes (plural of axis) of the system. The point where the axes meet is called the origin and has (0, 0) as coordinates. The axes directions represent an orthogonal basis. The combination of origin and basis forms a coordinate frame called the Cartesian frame.

Similarly, the position of any point in three-dimensional space can be specified by three Cartesian coordinates, which are the signed distances from the point to three mutually perpendicular planes. More generally, n Cartesian coordinates specify the point in an n-dimensional Euclidean space for any dimension n. These coordinates are the signed distances from the point to n mutually perpendicular fixed hyperplanes.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Cartesian coordinates in the context of Three dimensions

In geometry, a three-dimensional space is a mathematical space in which three values (termed coordinates) are required to determine the position of a point. Alternatively, it can be referred to as 3D space, 3-space or, rarely, tri-dimensional space. Most commonly, it means the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called 3-manifolds. The term may refer colloquially to a subset of space, a three-dimensional region (or 3D domain), a solid figure.

Technically, a tuple of n numbers can be understood as the Cartesian coordinates of a location in a n-dimensional Euclidean space. The set of these n-tuples is commonly denoted and can be identified to the pair formed by a n-dimensional Euclidean space and a Cartesian coordinate system.When n = 3, this space is called the three-dimensional Euclidean space (or simply "Euclidean space" when the context is clear). In classical physics, it serves as a model of the physical universe, in which all known matter exists. When relativity theory is considered, it can be considered a local subspace of space-time. While this space remains the most compelling and useful way to model the world as it is experienced, it is only one example of a 3-manifold. In this classical example, when the three values refer to measurements in different directions (coordinates), any three directions can be chosen, provided that these directions do not lie in the same plane. Furthermore, if these directions are pairwise perpendicular, the three values are often labeled by the terms width/breadth, height/depth, and length.

↑ Return to Menu

Cartesian coordinates in the context of Graph of a function

In mathematics, the graph of a function is the set of ordered pairs , where In the common case where and are real numbers, these pairs are Cartesian coordinates of points in a plane and often form a curve.The graphical representation of the graph of a function is also known as a plot.

In the case of functions of two variables – that is, functions whose domain consists of pairs –, the graph usually refers to the set of ordered triples where . This is a subset of three-dimensional space; for a continuous real-valued function of two real variables, its graph forms a surface, which can be visualized as a surface plot.

↑ Return to Menu

Cartesian coordinates in the context of Nomography

A nomogram (from Greek νόμος (nomos) 'law' and γράμμα (gramma) 'that which is drawn'), also called a nomograph, alignment chart, or abac, is a graphical calculating device, a two-dimensional diagram designed to allow the approximate graphical computation of a mathematical function. The field of nomography was invented in 1884 by the French engineer Philbert Maurice d'Ocagne (1862–1938) and used extensively for many years to provide engineers with fast graphical calculations of complicated formulas to a practical precision. Nomograms use a parallel coordinate system invented by d'Ocagne rather than standard Cartesian coordinates.

A nomogram consists of a set of n scales, one for each variable in an equation. Knowing the values of n-1 variables, the value of the unknown variable can be found, or by fixing the values of some variables, the relationship between the unfixed ones can be studied. The result is obtained by laying a straightedge across the known values on the scales and reading the unknown value from where it crosses the scale for that variable. The virtual or drawn line, created by the straightedge, is called an index line or isopleth.

↑ Return to Menu

Cartesian coordinates in the context of Real coordinate plane

In mathematics, the real coordinate space or real coordinate n-space, of dimension n, denoted R or , is the set of all ordered n-tuples of real numbers, that is the set of all sequences of n real numbers, also known as coordinate vectors.Special cases are called the real line R, the real coordinate plane R, and the real coordinate three-dimensional space R.With component-wise addition and scalar multiplication, it is a real vector space.

The coordinates over any basis of the elements of a real vector space form a real coordinate space of the same dimension as that of the vector space. Similarly, the Cartesian coordinates of the points of a Euclidean space of dimension n, E (Euclidean line, E; Euclidean plane, E; Euclidean three-dimensional space, E) form a real coordinate space of dimension n.

↑ Return to Menu

Cartesian coordinates in the context of Dot product

In mathematics, the dot product is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the scalar product of two vectors is the dot product of their Cartesian coordinates, and is independent from the choice of a particular Cartesian coordinate system. The terms "dot product" and "scalar product" are often used interchangeably when a Cartesian coordinate system has been fixed once for all. The scalar product being a particular inner product, the term "inner product" is also often used.

Algebraically, the dot product is the sum of the products of the corresponding entries of the two sequences of numbers. Geometrically, the scalar product of two vectors is the product of their lengths and the cosine of the angle between them. These definitions are equivalent when using Cartesian coordinates. In modern geometry, Euclidean spaces are often defined by using vector spaces. In this case, the scalar product is used for defining lengths (the length of a vector is the square root of the scalar product of the vector by itself) and angles (the cosine of the angle between two vectors is the quotient of their scalar product by the product of their lengths).

↑ Return to Menu