Carry-lookahead adder in the context of "Logic gates"

Play Trivia Questions online!

or

Skip to study material about Carry-lookahead adder in the context of "Logic gates"




⭐ Core Definition: Carry-lookahead adder

A carry-lookahead adder (CLA) or fast adder is a type of electronics adder used in digital logic. A carry-lookahead adder improves speed by reducing the amount of time required to determine carry bits. It can be contrasted with the simpler, but usually slower, ripple-carry adder (RCA), for which the carry bit is calculated alongside the sum bit, and each stage must wait until the previous carry bit has been calculated to begin calculating its own sum bit and carry bit. The carry-lookahead adder calculates one or more carry bits before the sum, which reduces the wait time to calculate the result of the larger-value bits of the adder.

Already in the mid-1800s, Charles Babbage recognized the performance penalty imposed by the ripple-carry used in his difference engine, and subsequently designed mechanisms for anticipating carriage for his never-built analytical engine. Konrad Zuse is thought to have implemented the first carry-lookahead adder in his 1930s binary mechanical computer, the Zuse Z1. Gerald B. Rosenberger of IBM filed for a patent on a modern binary carry-lookahead adder in 1957.

↓ Menu

In this Dossier

Carry-lookahead adder in the context of Logic gate

A logic gate is a device that performs a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, one that has, for instance, zero rise time and unlimited fan-out, or it may refer to a non-ideal physical device (see ideal and real op-amps for comparison).

The primary way of building logic gates uses diodes or transistors acting as electronic switches. Today, most logic gates are made from MOSFETs (metal–oxide–semiconductor field-effect transistors). They can also be constructed using vacuum tubes, electromagnetic relays with relay logic, fluidic logic, pneumatic logic, optics, molecules, acoustics, or even mechanical or thermal elements.

↑ Return to Menu