Carl Linnaeus in the context of "Mammillaria"

Play Trivia Questions online!

or

Skip to study material about Carl Linnaeus in the context of "Mammillaria"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Carl Linnaeus in the context of Life

Life is matter that has biological processes, such as signaling and the ability to sustain itself. It is defined descriptively by the capacity for homeostasis, organisation, metabolism, growth, adaptation, response to stimuli, and reproduction. All life over time eventually reaches a state of death, and none is immortal. Many philosophical definitions of living systems have been proposed, such as self-organizing systems. Defining life is further complicated by viruses, which replicate only in host cells, and the possibility of extraterrestrial life, which is likely to be very different from terrestrial life. Life exists all over the Earth in air, water, and soil, with many ecosystems forming the biosphere. Some of these are harsh environments occupied only by extremophiles. The life in a particular ecosystem is called its biota.

Life has been studied since ancient times, with theories such as Empedocles's materialism asserting that it was composed of four eternal elements, and Aristotle's hylomorphism asserting that living things have souls and embody both form and matter. Life originated at least 3.5 billion years ago, resulting in a universal common ancestor. This evolved into all the species that exist now, by way of many extinct species, some of which have left traces as fossils. Attempts to classify living things, too, began with Aristotle. Modern classification began with Carl Linnaeus's system of binomial nomenclature in the 1740s.

↑ Return to Menu

Carl Linnaeus in the context of Systematics

Systematics is the study of the diversification of living forms, both past and present, and the relationships among living things through time. Relationships are visualized as evolutionary trees (synonyms: phylogenetic trees, phylogenies). Phylogenies have two components: branching order (showing group relationships, graphically represented in cladograms) and branch length (showing amount of evolution). Phylogenetic trees of species and higher taxa are used to study the evolution of traits (e.g., anatomical or molecular characteristics) and the distribution of organisms (biogeography). Systematics, in other words, is used to understand the evolutionary history of life on Earth.

The word systematics is derived from the Latin word of Ancient Greek origin systema, which means systematic arrangement of organisms. Carl Linnaeus used 'Systema Naturae' as the title of his book.

↑ Return to Menu

Carl Linnaeus in the context of List of Latin and Greek words commonly used in systematic names

This list of Latin and Greek words commonly used in systematic names is intended to help those unfamiliar with classical languages to understand and remember the scientific names of organisms. The binomial nomenclature used for animals and plants is largely derived from Latin and Greek words, as are some of the names used for higher taxa, such as orders and above. At the time when biologist Carl Linnaeus (1707–1778) published the books that are now accepted as the starting point of binomial nomenclature, Latin was used in Western Europe as the common language of science, and scientific names were in Latin or Greek: Linnaeus continued this practice.

While learning Latin is now less common, it is still used by classical scholars, and for certain purposes in botany, medicine and the Roman Catholic Church, and it can still be found in scientific names. It is helpful to be able to understand the source of scientific names. Although the Latin names do not always correspond to the current English common names, they are often related, and if their meanings are understood, they are easier to recall. The binomial name often reflects limited knowledge or hearsay about a species at the time it was named. For instance Pan troglodytes, the chimpanzee, and Troglodytes troglodytes, the wren, are not necessarily cave-dwellers.

↑ Return to Menu

Carl Linnaeus in the context of Taxonomy (biology)

In biology, taxonomy (from Ancient Greek τάξις (taxis) 'arrangement' and -νομία (-nomia) 'method') is the scientific study of naming, defining (circumscribing) and classifying groups of biological organisms based on shared characteristics. Organisms are grouped into taxa (singular: taxon), and these groups are given a taxonomic rank; groups of a given rank can be aggregated to form a more inclusive group of higher rank, thus creating a taxonomic hierarchy. The principal ranks in modern use are domain, kingdom, phylum (division is sometimes used in botany in place of phylum), class, order, family, genus, and species. The Swedish botanist Carl Linnaeus is regarded as the founder of the current system of taxonomy, having developed a ranked system known as Linnaean taxonomy for categorizing organisms.

With advances in the theory, data and analytical technology of biological systematics, the Linnaean system has transformed into a system of modern biological classification intended to reflect the evolutionary relationships among organisms, both living and extinct.

↑ Return to Menu

Carl Linnaeus in the context of History of biology

The history of biology traces the study of the living world from ancient to modern times. Although the concept of biology as a single coherent field arose in the 19th century, the biological sciences emerged from traditions of medicine and natural history reaching back to Ayurveda, ancient Egyptian medicine and the works of Aristotle, Theophrastus and Galen in the ancient Greco-Roman world. This ancient work was further developed in the Middle Ages by Muslim physicians and scholars such as Avicenna. During the European Renaissance and early modern period, biological thought was revolutionized in Europe by a renewed interest in empiricism and the discovery of many novel organisms. Prominent in this movement were Vesalius and Harvey, who used experimentation and careful observation in physiology, and naturalists such as Linnaeus and Buffon who began to classify the diversity of life and the fossil record, as well as the development and behavior of organisms. Antonie van Leeuwenhoek revealed by means of microscopy the previously unknown world of microorganisms, laying the groundwork for cell theory. The growing importance of natural theology, partly a response to the rise of mechanical philosophy, encouraged the growth of natural history (although it entrenched the argument from design).

Over the 18th and 19th centuries, biological sciences such as botany and zoology became increasingly professional scientific disciplines. Lavoisier and other physical scientists began to connect the animate and inanimate worlds through physics and chemistry. Explorer-naturalists such as Alexander von Humboldt investigated the interaction between organisms and their environment, and the ways this relationship depends on geography—laying the foundations for biogeography, ecology and ethology. Naturalists began to reject essentialism and consider the importance of extinction and the mutability of species. Cell theory provided a new perspective on the fundamental basis of life. These developments, as well as the results from embryology and paleontology, were synthesized in Charles Darwin's theory of evolution by natural selection. The end of the 19th century saw the fall of spontaneous generation and the rise of the germ theory of disease, though the mechanism of inheritance remained a mystery.

↑ Return to Menu

Carl Linnaeus in the context of Botany

Botany, also called phytology or plant science, is the branch of natural science and biology that studies plants, especially their anatomy, taxonomy, and ecology. A botanist or plant scientist is a scientist who specialises in this field. "Plant" and "botany" may be defined more narrowly to include only land plants and their study, which is also known as phytology. Phytologists or botanists (in the strict sense) study approximately 410,000 species of land plants, including some 391,000 species of vascular plants (of which approximately 369,000 are flowering plants) and approximately 20,000 bryophytes.

Botany originated as prehistoric herbalism to identify and later cultivate plants that were edible, poisonous, and medicinal, making it one of the first endeavours of human investigation. Medieval physic gardens, often attached to monasteries, contained plants that possibly had medicinal benefits. They were forerunners of the first botanical gardens attached to universities, founded from the 1540s onwards. One of the earliest was the Padua botanical garden. These gardens facilitated the academic study of plants. Efforts to catalogue and describe their collections were the beginnings of plant taxonomy and led in 1753 to the binomial system of nomenclature of Carl Linnaeus that remains in use to this day for the naming of all biological species.

↑ Return to Menu

Carl Linnaeus in the context of Zoology

Zoology (/zˈɒləi/ zoh-OL-ə-jee, UK also /zuˈ-/ zoo-) is the scientific study of animals. Its studies include the structure, embryology, classification, habits, and distribution of all animals, both living and extinct, and how they interact with their ecosystems. Zoology is one of the primary branches of biology. The term is derived from Ancient Greek ζῷον, zōion ('animal'), and λόγος, logos ('knowledge', 'study').

Although humans have always been interested in the natural history of the animals they saw around them, and used this knowledge to domesticate certain species, the formal study of zoology can be said to have originated with Aristotle. He viewed animals as living organisms, studied their structure and development, and considered their adaptations to their surroundings and the function of their parts. Modern zoology has its origins during the Renaissance and early modern period, with Carl Linnaeus, Antonie van Leeuwenhoek, Robert Hooke, Charles Darwin, Gregor Mendel and many others.

↑ Return to Menu

Carl Linnaeus in the context of Scientific name

The first part of the name – the generic name – identifies the genus to which the species belongs, whereas the second part – the specific name or specific epithet – distinguishes the species within the genus. For example, modern humans belong to the genus Homo and within this genus to the species Homo sapiens. Tyrannosaurus rex is likely the most widely known binomial. The formal introduction of this system of naming species is credited to Carl Linnaeus, effectively beginning with his work Species Plantarum in 1753. But as early as 1622, Gaspard Bauhin introduced in his book Pinax theatri botanici (English, Illustrated exposition of plants) containing many names of genera that were later adopted by Linnaeus. Binomial nomenclature was introduced in order to provide succinct, relatively stable and verifiable names that could be used and understood internationally, unlike common names which are usually different in every language.

↑ Return to Menu

Carl Linnaeus in the context of International Code of Nomenclature for algae, fungi, and plants

The International Code of Nomenclature for algae, fungi, and plants (ICN or ICNafp) is the set of rules and recommendations dealing with the formal botanical names that are given to plants, fungi and a few other groups of organisms, all those "traditionally treated as algae, fungi, or plants". It was formerly called the International Code of Botanical Nomenclature (ICBN); the name was changed at the International Botanical Congress in Melbourne in July 2011 as part of the Melbourne Code which replaced the Vienna Code of 2005.

The ICN can only be changed by an International Botanical Congress (IBC), with the International Association for Plant Taxonomy providing the supporting infrastructure. Each new edition supersedes the earlier editions and is retroactive back to 1753, except where different starting dates are specified.

↑ Return to Menu