Carbon–hydrogen bond in the context of "Electron shell"

Play Trivia Questions online!

or

Skip to study material about Carbon–hydrogen bond in the context of "Electron shell"

Ad spacer

⭐ Core Definition: Carbon–hydrogen bond

In chemistry, the carbon–hydrogen bond (C−H bond) is a chemical bond between carbon and hydrogen atoms that can be found in many organic compounds. This bond is a covalent, single bond, meaning that carbon shares its outer valence electrons with up to four hydrogens. This completes both of their outer shells, making them stable.

Carbon–hydrogen bonds have a bond length of about 1.09 Å (1.09 × 10 m) and a bond energy of about 413 kJ/mol (see table below). Using Pauling's scale—C (2.55) and H (2.2)—the electronegativity difference between these two atoms is 0.35. Because of this small difference in electronegativities, the C−H bond is generally regarded as being non-polar. In structural formulas of molecules, the hydrogen atoms are often omitted. Compound classes consisting solely of C−H bonds and C−C bonds are alkanes, alkenes, alkynes, and aromatic hydrocarbons. Collectively they are known as hydrocarbons.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Carbon–hydrogen bond in the context of Organic compound

Organic compounds are a subclass of chemical compounds of carbon. Little consensus exists among chemists on the exact definition of organic compound; the only universally accepted definition is the quasi-tautological "organic compounds are the subject matter of organic chemistry".

Generally, any large chemical compound containing a carbon–hydrogen or carbon–carbon bond is accepted as an organic compound. Thus alkanes (e.g. ethane, CH3−CH3) and their derivatives are typically considered organic. For historical and disciplinary reasons, small molecules containing carbon are generally not accepted: cyanide ion (CN), hydrogen cyanide (HCN), chloroformic acid (ClCO2H), carbon dioxide (CO2), and carbonate ion (CO2−3) may all be excluded.

↑ Return to Menu

Carbon–hydrogen bond in the context of Inorganic compound

An inorganic compound is typically a chemical compound that lacks carbon–hydrogen bondsthat is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as inorganic chemistry.

Inorganic compounds comprise most of the Earth's crust, although the compositions of the deep mantle remain active areas of investigation.

↑ Return to Menu

Carbon–hydrogen bond in the context of Substitution reaction

A substitution reaction (also known as single displacement reaction or single substitution reaction) is a chemical reaction during which one functional group in a chemical compound is replaced by another functional group. Substitution reactions are of prime importance in organic chemistry. Substitution reactions in organic chemistry are classified either as electrophilic or nucleophilic depending upon the reagent involved, whether a reactive intermediate involved in the reaction is a carbocation, a carbanion or a free radical, and whether the substrate is aliphatic or aromatic. Detailed understanding of a reaction type helps to predict the product outcome in a reaction. It also is helpful for optimizing a reaction with regard to variables such as temperature and choice of solvent.

A good example of a substitution reaction is halogenation. When chlorine gas (Cl2) is irradiated, some of the molecules are split into two chlorine radicals (Cl•), whose free electrons are strongly nucleophilic. One of them breaks a C–H covalent bond in CH4 and grabs the hydrogen atom to form the electrically neutral HCl. The other radical reforms a covalent bond with the CH3• to form CH3Cl (methyl chloride).

↑ Return to Menu