Carbon-fiber-reinforced polymers in the context of "Strength-to-weight ratio"

Play Trivia Questions online!

or

Skip to study material about Carbon-fiber-reinforced polymers in the context of "Strength-to-weight ratio"




⭐ Core Definition: Carbon-fiber-reinforced polymers

Carbon fiber-reinforced polymers (American English), carbon-fibre-reinforced polymers (Commonwealth English), carbon-fiber-reinforced plastics, carbon-fiber reinforced-thermoplastic (CFRP, CRP, CFRTP), also known as carbon fiber, carbon composite, or just carbon, are extremely strong and light fiber-reinforced plastics that contain carbon fibers. CFRPs can be expensive to produce, but are commonly used wherever high strength-to-weight ratio and stiffness (rigidity) are required, such as aerospace, superstructures of ships, automotive, civil engineering, sports equipment, and an increasing number of consumer and technical applications.

The binding polymer is often a thermoset resin such as epoxy, but other thermoset or thermoplastic polymers, such as polyester, vinyl ester, or nylon, are sometimes used. The properties of the final CFRP product can be affected by the type of additives introduced to the binding matrix (resin). The most common additive is silica, but other additives such as rubber and carbon nanotubes can be used.

↓ Menu

In this Dossier

Carbon-fiber-reinforced polymers in the context of Fiberglass

Fiberglass (American English) or fibreglass (Commonwealth English) is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet called a chopped strand mat, or woven into glass cloth. The plastic matrix may be a thermoset polymer matrix—most often based on thermosetting polymers such as epoxy, polyester resin, or vinyl ester resin—or a thermoplastic.

Cheaper and more flexible than carbon fiber, it is stronger than many metals by weight, non-magnetic, non-conductive, transparent to electromagnetic radiation, can be molded into complex shapes, and is chemically inert under many circumstances. Applications include aircraft, boats, automobiles, bath tubs and enclosures, swimming pools, hot tubs, septic tanks, water tanks, roofing, pipes, cladding, orthopedic casts, surfboards, and external door skins.

↑ Return to Menu

Carbon-fiber-reinforced polymers in the context of Graphite-Epoxy Motor

The Graphite-Epoxy Motor (GEM) is a family of solid rocket boosters developed in the late 1980s and first flown in 1990. The motors use casings made from carbon-fiber-reinforced polymer and a propellant consisting of ammonium perchlorate composite propellant, formulated with hydroxyl-terminated polybutadiene as a binder, ammonium perchlorate as an oxidizer, and aluminum powder as a fuel.

Production of GEM motors has passed through several companies due to mergers and acquisitions. They were manufactured by Hercules from 1990 to 1995, Alliant Techsystems from 1995 to 2015, and Orbital ATK from 2015 to 2017, before being taken over by Northrop Grumman in 2017.

↑ Return to Menu

Carbon-fiber-reinforced polymers in the context of Boeing 777

The Boeing 777, commonly referred to as the Triple Seven, is an American long-range wide-body airliner developed and manufactured by Boeing Commercial Airplanes. The 777 is the world's largest twinjet and the most-built wide-body airliner.The jetliner was designed to bridge the gap between Boeing's other wide body airplanes, the twin-engined 767 and quad-engined 747, and to replace aging DC-10 and L-1011 trijets. Developed in consultation with eight major airlines, the 777 program was launched in October 1990, with an order from United Airlines. The prototype aircraft rolled out in April 1994, and first flew that June. The 777 entered service with the launch operator United Airlines in June 1995. Longer-range variants were launched in 2000, and first delivered in 2004. Over 2,300 Boeing 777 aircraft have been ordered, with over 70 operators worldwide.

The Triple Seven can accommodate a ten–abreast seating layout and has a typical 3-class capacity of 301 to 368 passengers, with a range of 5,240 to 8,555 nautical miles [nmi] (9,700 to 15,840 km; 6,030 to 9,840 mi). The jetliner is recognizable for its large-diameter turbofan engines, raked wingtips, six wheels on each main landing gear, fully circular fuselage cross-section, and a blade-shaped tail cone. The 777 became the first Boeing airliner to use fly-by-wire controls and to apply a carbon composite structure in the tailplanes.

↑ Return to Menu