Capacitor in the context of Electrostatic coupling


Capacitor in the context of Electrostatic coupling

Capacitor Study page number 1 of 4

Play TriviaQuestions Online!

or

Skip to study material about Capacitor in the context of "Electrostatic coupling"


⭐ Core Definition: Capacitor

In electronics, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. It is a passive electronic component with two terminals. A capacitor was originally known as a condenser, a term still encountered in a few compound names, such as the condenser microphone. Colloquially, a capacitor may be called a cap.

The utility of a capacitor depends on its capacitance. While some capacitance exists between any two electrical conductors in proximity in a circuit, a capacitor is a component designed specifically to add capacitance to some part of the circuit.

↓ Menu
HINT:

In this Dossier

Capacitor in the context of Charge-coupled device

A charge-coupled device (CCD) is an integrated circuit containing an array of linked, or coupled, capacitors. Under the control of an external circuit, each capacitor can transfer its electric charge to a neighboring capacitor. CCD sensors are a major technology used in digital imaging.

View the full Wikipedia page for Charge-coupled device
↑ Return to Menu

Capacitor in the context of Voltage

Voltage, also known as (electrical) potential difference, electric pressure, or electric tension, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to move a positive test charge from the first point to the second point. In the International System of Units (SI), the derived unit for voltage is the volt (V).

The voltage between points can be caused by the build-up of electric charge (e.g., a capacitor), and from an electromotive force (e.g., electromagnetic induction in a generator). On a macroscopic scale, a potential difference can be caused by electrochemical processes (e.g., cells and batteries), the pressure-induced piezoelectric effect, photovoltaic effect, and the thermoelectric effect. Since it is the difference in electric potential, it is a physical scalar quantity.

View the full Wikipedia page for Voltage
↑ Return to Menu

Capacitor in the context of Digital electronics

Digital electronics is a field of electronics involving the study of digital signals and the engineering of devices that use or produce them. It deals with the relationship between binary inputs and outputs by passing electrical signals through logical gates, resistors, capacitors, amplifiers, and other electronic components. The field of digital electronics is in contrast to analog electronics, which work primarily with analog signals (signals with varying degrees of intensity as opposed to on/off two-state binary signals). Despite the name, digital electronics designs include important analog design considerations.

Large assemblies of logic gates, used to represent more complex ideas, are often packaged into integrated circuits. Complex devices may have simple electronic representations of Boolean logic functions.

View the full Wikipedia page for Digital electronics
↑ Return to Menu

Capacitor in the context of Integrated circuit

An integrated circuit (IC), also known as a microchip or simply chip, is a compact assembly of electronic circuits formed from various electronic components — such as transistors, resistors, and capacitors — and their interconnections. These components are fabricated onto a thin, flat piece ("chip") of semiconductor material, most commonly silicon. Integrated circuits are integral to a wide variety of electronic devices — including computers, smartphones, and televisions — performing functions such as data processing, control, and storage. They have transformed the field of electronics by enabling device miniaturization, improving performance, and reducing cost.

Compared to assemblies built from discrete components, integrated circuits are orders of magnitude smaller, faster, more energy-efficient, and less expensive, allowing for a very high transistor count.

View the full Wikipedia page for Integrated circuit
↑ Return to Menu

Capacitor in the context of Microphone

A microphone, colloquially called a mic (/mk/), or mike, is a transducer that converts sound into an electrical signal. Microphones are used in telecommunication, sound recording, broadcasting, and consumer electronics, including telephones, hearing aids, and mobile devices.

Several types of microphone are used today, which employ different methods to convert the air pressure variations of a sound wave to an electrical signal. The most common are the dynamic microphone, which uses a coil of wire suspended in a magnetic field; the condenser microphone, which uses the vibrating diaphragm as a capacitor plate; and the contact microphone, which uses a crystal of piezoelectric material. Microphones typically need to be connected to a preamplifier before the signal can be recorded or reproduced.

View the full Wikipedia page for Microphone
↑ Return to Menu

Capacitor in the context of Solar inverter

A solar inverter or photovoltaic (PV) inverter is a type of power inverter which converts the variable direct current (DC) output of a photovoltaic solar panel into a utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network. It is a critical balance of system (BOS)–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar power inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection.

View the full Wikipedia page for Solar inverter
↑ Return to Menu

Capacitor in the context of Transmission line

In electrical engineering, a transmission line is a specialized cable or other structure designed to conduct electromagnetic waves in a contained manner. The term applies when the conductors are long enough that the wave nature of the transmission must be taken into account. This applies especially to radio-frequency engineering because the short wavelengths mean that wave phenomena arise over very short distances (this can be as short as millimetres depending on frequency). However, the theory of transmission lines was historically developed to explain phenomena on very long telegraph lines, especially submarine telegraph cables.

Transmission lines are used for purposes such as connecting radio transmitters and receivers with their antennas (they are then called feed lines or feeders), distributing cable television signals, trunklines routing calls between telephone switching centres, computer network connections and high speed computer data buses. RF engineers commonly use short pieces of transmission line, usually in the form of printed planar transmission lines, arranged in certain patterns to build circuits such as filters. These circuits, known as distributed-element circuits, are an alternative to traditional circuits using discrete capacitors and inductors.

View the full Wikipedia page for Transmission line
↑ Return to Menu

Capacitor in the context of Heating and air conditioning

Heating, ventilation, and air conditioning (HVAC /ˈˌvæk/) systems use advanced technologies to regulate temperature, humidity, and indoor air quality in residential, commercial, and industrial buildings, and in enclosed vehicles. Its goal is to provide thermal comfort and remove contaminants from the air. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. Modern HVAC designs focus on energy efficiency and sustainability, especially with the rising demand for green building solutions. In modern construction, MEP (Mechanical, Electrical, and Plumbing) engineers integrate HVAC systems with energy modeling techniques to optimize system performance and reduce operational costs. "Refrigeration" is sometimes added to the field's abbreviation as HVAC&R or HVACR, or "ventilation" is dropped, as in HACR (as in the designation of HACR-rated circuit breakers).

HVAC is an important part of residential structures such as single family homes, apartment buildings, hotels, and senior living facilities; medium to large industrial and office buildings such as skyscrapers and hospitals; vehicles such as cars, trains, airplanes, ships and submarines; and in marine environments, where safe and healthy building conditions are regulated with respect to temperature and humidity, using fresh air from outdoors.

View the full Wikipedia page for Heating and air conditioning
↑ Return to Menu

Capacitor in the context of Accumulator (energy)

An accumulator is an energy storage device: a device which accepts energy, stores energy, and releases energy as needed. Some accumulators accept energy at a low rate (low power) over a long time interval and deliver the energy at a high rate (high power) over a short time interval. Some accumulators accept energy at a high rate over a short time interval and deliver the energy at a low rate over a longer time interval. Some accumulators typically accept and release energy at comparable rates. Various devices can store thermal energy, mechanical energy, and electrical energy. Energy is usually accepted and delivered in the same form. Some devices store a different form of energy than what they receive and deliver performing energy conversion on the way in and on the way out.

Examples of accumulators include steam accumulators, mainsprings, flywheel energy storage, hydraulic accumulators, rechargeable batteries, capacitors, inductors, compensated pulsed alternators (compulsators), and pumped-storage hydroelectric plants.

View the full Wikipedia page for Accumulator (energy)
↑ Return to Menu

Capacitor in the context of Microelectronics

Microelectronics is a subfield of electronics. As the name suggests, microelectronics relates to the study and manufacture (or microfabrication) of very small electronic designs and components. Usually, but not always, this means micrometre-scale or smaller. These devices are typically made from semiconductor materials. Many components of a normal electronic design are available in a microelectronic equivalent. These include transistors, capacitors, inductors, resistors, diodes and (naturally) insulators and conductors can all be found in microelectronic devices. Unique wiring techniques such as wire bonding are also often used in microelectronics because of the unusually small size of the components, leads and pads. This technique requires specialized equipment and is expensive.

Digital integrated circuits (ICs) consist of billions of transistors, resistors, diodes, and capacitors. Analog circuits commonly contain resistors and capacitors as well. Inductors are used in some high frequency analog circuits, but tend to occupy larger chip area due to their lower reactance at low frequencies. Gyrators can replace them in many applications.

View the full Wikipedia page for Microelectronics
↑ Return to Menu

Capacitor in the context of Electrical network

An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, current sources, resistances, inductances, capacitances). An electrical circuit is a network consisting of a closed loop, giving a return path for the current. Thus all circuits are networks, but not all networks are circuits (although networks without a closed loop are often referred to as open circuits).

A resistive network is a network containing only resistors and ideal current and voltage sources. Analysis of resistive networks is less complicated than analysis of networks containing capacitors and inductors. If the sources are constant (DC) sources, the result is a DC network. The effective resistance and current distribution properties of arbitrary resistor networks can be modeled in terms of their graph measures and geometrical properties.

View the full Wikipedia page for Electrical network
↑ Return to Menu

Capacitor in the context of Electronic circuit

An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or traces through which electric current can flow. It is a type of electrical circuit. For a circuit to be referred to as electronic, rather than electrical, generally at least one active component must be present. The combination of components and wires allows various simple and complex operations to be performed: signals can be amplified, computations can be performed, and data can be moved from one place to another.

Circuits can be constructed of discrete components connected by individual pieces of wire, but today it is much more common to create interconnections by photolithographic techniques on a laminated substrate (a printed circuit board or PCB) and solder the components to these interconnections to create a finished circuit. In an integrated circuit or IC, the components and interconnections are formed on the same substrate, typically a semiconductor such as doped silicon or (less commonly) gallium arsenide.

View the full Wikipedia page for Electronic circuit
↑ Return to Menu

Capacitor in the context of Surface-mount technology

Surface-mount technology (SMT), originally called planar mounting, is a method in which the electrical components are mounted directly onto the surface of a printed circuit board (PCB). An electrical component mounted in this manner is referred to as a surface-mount device (SMD). In industry, this approach has largely replaced through-hole technology construction method of fitting components, in large part because SMT allows for increased manufacturing automation which reduces cost and improves quality. It also allows for more components to fit on a given area of substrate. Both technologies can be used on the same board, with the through-hole technology often used for components not suitable for surface mounting such as large transformers and heat-sinked power semiconductors.

An SMT component is usually smaller than its through-hole counterpart because it has either smaller leads or no leads at all. It may have short pins or leads of various styles, flat contacts, a matrix of solder balls (BGAs), or terminations on the body of the component.

View the full Wikipedia page for Surface-mount technology
↑ Return to Menu