Cantor's diagonal argument in the context of "Algorithmic complexity theory"


Cantor's diagonal argument in the context of "Algorithmic complexity theory"

Cantor's diagonal argument Study page number 1 of 1

Answer the Cantor's Diagonal Argument Trivia Question!

or

Skip to study material about Cantor's diagonal argument in the context of "Algorithmic complexity theory"


⭐ Core Definition: Cantor's diagonal argument

Cantor's diagonal argument (among various similar names) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers. Such sets are now called uncountable sets, and the size of infinite sets is treated by the theory of cardinal numbers, which Cantor began.

Georg Cantor published this proof in 1891, but it was not his first proof of the uncountability of the real numbers, which appeared in 1874.However, it demonstrates a general technique that has since been used in a wide range of proofs, including the first of Gödel's incompleteness theorems and Turing's answer to the Entscheidungsproblem. Diagonalization arguments are often also the source of contradictions like Russell's paradox and Richard's paradox.

↓ Menu
HINT:

👉 Cantor's diagonal argument in the context of Algorithmic complexity theory

In algorithmic information theory (a subfield of computer science and mathematics), the Kolmogorov complexity of an object, such as a piece of text, is the length of a shortest computer program (in a predetermined programming language) that produces the object as output. It is a measure of the computational resources needed to specify the object, and is also known as algorithmic complexity, Solomonoff–Kolmogorov–Chaitin complexity, program-size complexity, descriptive complexity, or algorithmic entropy. It is named after Andrey Kolmogorov, who first published on the subject in 1963 and is a generalization of classical information theory.

The notion of Kolmogorov complexity can be used to state and prove impossibility results akin to Cantor's diagonal argument, Gödel's incompleteness theorem, and Turing's halting problem.In particular, no program P computing a lower bound for each text's Kolmogorov complexity can return a value essentially larger than P's own length (see section § Chaitin's incompleteness theorem); hence no single program can compute the exact Kolmogorov complexity for infinitely many texts.

↓ Explore More Topics
In this Dossier