Calculus in the context of Univariate polynomial


Calculus in the context of Univariate polynomial

Calculus Study page number 1 of 6

Play TriviaQuestions Online!

or

Skip to study material about Calculus in the context of "Univariate polynomial"


⭐ Core Definition: Calculus

Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations.

Originally called infinitesimal calculus or "the calculus of infinitesimals", it has two major branches, differential calculus and integral calculus. The former concerns instantaneous rates of change, and the slopes of curves, while the latter concerns accumulation of quantities, and areas under or between curves. These two branches are related to each other by the fundamental theorem of calculus. They make use of the fundamental notions of convergence of infinite sequences and infinite series to a well-defined limit. It is the "mathematical backbone" for dealing with problems where variables change with time or another reference variable. It has also been called "the basic instrument of physical science".

↓ Menu
HINT:

In this Dossier

Calculus in the context of Archimedes

Archimedes of Syracuse (/ˌɑːrkɪˈmdz/ AR-kih-MEE-deez; c. 287 – c. 212 BC) was an Ancient Greek mathematician, physicist, engineer, astronomer, and inventor from the city of Syracuse in Sicily. Although few details of his life are known, based on his surviving work, he is considered one of the leading scientists in classical antiquity, and one of the greatest mathematicians of all time. Archimedes anticipated modern calculus and analysis by applying the concept of the infinitesimals and the method of exhaustion to derive and rigorously prove many geometrical theorems, including the area of a circle, the surface area and volume of a sphere, the area of an ellipse, the area under a parabola, the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, and the area of a spiral.

Archimedes' other mathematical achievements include deriving an approximation of pi (π), defining and investigating the Archimedean spiral, and devising a system using exponentiation for expressing very large numbers. He was also one of the first to apply mathematics to physical phenomena, working on statics and hydrostatics. Archimedes' achievements in this area include a proof of the law of the lever, the widespread use of the concept of center of gravity, and the enunciation of the law of buoyancy known as Archimedes' principle. In astronomy, he made measurements of the apparent diameter of the Sun and the size of the universe. He is also said to have built a planetarium device that demonstrated the movements of the known celestial bodies, and may have been a precursor to the Antikythera mechanism. He is also credited with designing innovative machines, such as his screw pump, compound pulleys, and defensive war machines to protect his native Syracuse from invasion.

View the full Wikipedia page for Archimedes
↑ Return to Menu

Calculus in the context of Mathematical analysis

Analysis is the branch of mathematics dealing with continuous functions, limits, and related theories, such as differentiation, integration, measure, infinite sequences, series, and analytic functions.

These theories are usually studied in the context of real and complex numbers and functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis.Analysis may be distinguished from geometry; however, it can be applied to any space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space).

View the full Wikipedia page for Mathematical analysis
↑ Return to Menu

Calculus in the context of Isaac Newton

Sir Isaac Newton (/ˈnjtən/ ; 4 January [O.S. 25 December] 1643 – 31 March [O.S. 20 March] 1727) was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, author, and inventor. He was a key figure in the Scientific Revolution and the Enlightenment that followed. His book Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), first published in 1687, achieved the first great unification in physics and established classical mechanics. Newton also made seminal contributions to optics, and shares credit with German mathematician Gottfried Wilhelm Leibniz for formulating infinitesimal calculus, though he developed calculus years before Leibniz. Newton contributed to and refined the scientific method, and his work is considered the most influential in bringing forth modern science.

In the Principia, Newton formulated the laws of motion and universal gravitation that formed the dominant scientific viewpoint for centuries until it was superseded by the theory of relativity. He used his mathematical description of gravity to derive Kepler's laws of planetary motion, account for tides, the trajectories of comets, the precession of the equinoxes and other phenomena, eradicating doubt about the Solar System's heliocentricity. Newton solved the two-body problem and introduced the three-body problem. He demonstrated that the motion of objects on Earth and celestial bodies could be accounted for by the same principles. Newton's inference that the Earth is an oblate spheroid was later confirmed by the geodetic measurements of Alexis Clairaut, Charles Marie de La Condamine, and others, convincing most European scientists of the superiority of Newtonian mechanics over earlier systems. He was also the first to calculate the age of Earth by experiment, and described a precursor to the modern wind tunnel. Further, he was the first to provide a quantitative estimate of the solar mass.

View the full Wikipedia page for Isaac Newton
↑ Return to Menu

Calculus in the context of Gottfried Leibniz

Gottfried Wilhelm Leibniz (or Leibnitz; 1 July 1646 [O.S. 21 June] – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat who is credited, alongside Isaac Newton, with the creation of calculus in addition to many other branches of mathematics, such as binary arithmetic and statistics. Leibniz has been called the "last universal genius" due to his vast expertise across fields, which became a rarity after his lifetime with the coming of the Industrial Revolution and the spread of specialized labour. He is a prominent figure in both the history of philosophy and the history of mathematics. He wrote works on philosophy, theology, ethics, politics, law, history, philology, games, music, and other studies. Leibniz also made major contributions to physics and technology, and anticipated notions that surfaced much later in probability theory, biology, medicine, geology, psychology, linguistics and computer science.

Leibniz contributed to the field of library science, developing a cataloguing system (at the Herzog August Library in Wolfenbüttel, Germany) that came to serve as a model for many of Europe's largest libraries. His contributions to a wide range of subjects were scattered in various learned journals, in tens of thousands of letters and in unpublished manuscripts. He wrote in several languages, primarily in Latin, French and German.

View the full Wikipedia page for Gottfried Leibniz
↑ Return to Menu

Calculus in the context of Real number

In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a length, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion.

The real numbers are fundamental in calculus (and in many other branches of mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.

View the full Wikipedia page for Real number
↑ Return to Menu

Calculus in the context of Discrete mathematics

Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a one-to-one correspondence (bijection) with natural numbers), rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, graphs, and statements in logic. By contrast, discrete mathematics excludes topics in "continuous mathematics" such as real numbers, calculus or Euclidean geometry. Discrete objects can often be enumerated by integers; more formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets (finite sets or sets with the same cardinality as the natural numbers). However, there is no exact definition of the term "discrete mathematics".

The set of objects studied in discrete mathematics can be finite or infinite. The term finite mathematics is sometimes applied to parts of the field of discrete mathematics that deal with finite sets, particularly those areas relevant to business.

View the full Wikipedia page for Discrete mathematics
↑ Return to Menu

Calculus in the context of Continuous function

Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the most general continuous functions, and their definition is the basis of topology.

View the full Wikipedia page for Continuous function
↑ Return to Menu

Calculus in the context of Limit (mathematics)

In mathematics, a limit is the value that a function (or sequence) approaches as the argument (or index) approaches some value. Limits of functions are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals.The concept of a limit of a sequence is further generalized to the concept of a limit of a topological net, and is closely related to limit and direct limit in category theory.The limit inferior and limit superior provide generalizations of the concept of a limit which are particularly relevant when the limit at a point may not exist.

View the full Wikipedia page for Limit (mathematics)
↑ Return to Menu

Calculus in the context of Integral

In mathematics, an integral is the continuous analog of a sum, and is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus, the other being differentiation. Integration was initially used to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Usage of integration expanded to a wide variety of scientific fields thereafter.

A definite integral computes the signed area of the region in the plane that is bounded by the graph of a given function between two points in the real line. Conventionally, areas above the horizontal axis of the plane are positive while areas below are negative. Integrals also refer to the concept of an antiderivative, a function whose derivative is the given function; in this case, they are also called indefinite integrals. The fundamental theorem of calculus relates definite integration to differentiation and provides a method to compute the definite integral of a function when its antiderivative is known; differentiation and integration are inverse operations.

View the full Wikipedia page for Integral
↑ Return to Menu

Calculus in the context of Series (mathematics)

In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance.

Among the Ancient Greeks, the idea that a potentially infinite summation could produce a finite result was considered paradoxical, most famously in Zeno's paradoxes. Nonetheless, infinite series were applied practically by Ancient Greek mathematicians including Archimedes, for instance in the quadrature of the parabola. The mathematical side of Zeno's paradoxes was resolved using the concept of a limit during the 17th century, especially through the early calculus of Isaac Newton. The resolution was made more rigorous and further improved in the 19th century through the work of Carl Friedrich Gauss and Augustin-Louis Cauchy, among others, answering questions about which of these sums exist via the completeness of the real numbers and whether series terms can be rearranged or not without changing their sums using absolute convergence and conditional convergence of series.

View the full Wikipedia page for Series (mathematics)
↑ Return to Menu

Calculus in the context of Leibniz–Newton calculus controversy

In the history of calculus, the calculus controversy (German: Prioritätsstreit, lit.'priority dispute') was an argument between mathematicians Isaac Newton and Gottfried Wilhelm Leibniz over who had first invented calculus. The question was a major intellectual controversy, beginning in 1699 and reaching its peak in 1712. Leibniz had published his work on calculus first, but Newton's supporters accused Leibniz of plagiarizing Newton's unpublished ideas. The modern consensus is that the two men independently developed their ideas. Their creation of calculus has been called arguably "the greatest advance in mathematics that had taken place since the time of Archimedes."

Newton stated he had begun working on a form of calculus (which he called "The Method of Fluxions and Infinite Series") in 1666, at the age of 23, but the work was not published until 1737 as a minor annotation in the back of one of his works decades later (a relevant Newton manuscript of October 1666 is now published among his mathematical papers). Gottfried Leibniz began working on his variant of calculus in 1674, and in 1684 published his first paper employing it, "Nova Methodus pro Maximis et Minimis". L'Hôpital published a text on Leibniz's calculus in 1696 (in which he recognized that Newton's Principia of 1687 was "nearly all about this calculus"). Meanwhile, Newton, though he explained his (geometrical) form of calculus in Section I of Book I of the Principia of 1687, did not explain his eventual fluxional notation for the calculus in print until 1693 (in part) and 1704 (in full).

View the full Wikipedia page for Leibniz–Newton calculus controversy
↑ Return to Menu

Calculus in the context of Pierre-Simon Laplace

Pierre-Simon, Marquis de Laplace (/ləˈplɑːs/; French: [pjɛʁ simɔ̃ laplas]; 23 March 1749 – 5 March 1827) was a French polymath, a scholar whose work has been instrumental in the fields of physics, astronomy, mathematics, engineering, statistics, and philosophy. He summarized and extended the work of his predecessors in his five-volume Mécanique céleste (Celestial Mechanics) (1799–1825). This work translated the geometric study of classical mechanics to one based on calculus, opening up a broader range of problems. Laplace also popularized and further confirmed Sir Isaac Newton's work. In statistics, the Bayesian interpretation of probability was developed mainly by Laplace.

Laplace formulated Laplace's equation, and pioneered the Laplace transform which appears in many branches of mathematical physics, a field that he took a leading role in forming. The Laplacian differential operator, widely used in mathematics, is also named after him. He restated and developed the nebular hypothesis of the origin of the Solar System and was one of the first scientists to suggest an idea similar to that of a black hole, with Stephen Hawking stating that "Laplace essentially predicted the existence of black holes". He originated Laplace's demon, which is a hypothetical all-predicting intellect. He also refined Newton's calculation of the speed of sound to derive a more accurate measurement.

View the full Wikipedia page for Pierre-Simon Laplace
↑ Return to Menu

Calculus in the context of Differential calculus

In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve.

The primary objects of study in differential calculus are the derivative of a function, related notions such as the differential, and their applications. The derivative of a function at a chosen input value describes the rate of change of the function near that input value. The process of finding a derivative is called differentiation. Geometrically, the derivative at a point is the slope of the tangent line to the graph of the function at that point, provided that the derivative exists and is defined at that point. For a real-valued function of a single real variable, the derivative of a function at a point generally determines the best linear approximation to the function at that point.

View the full Wikipedia page for Differential calculus
↑ Return to Menu

Calculus in the context of Circle

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter. A circle bounds a region of the plane called a disc.

The circle has been known since before the beginning of recorded history. Natural circles are common, such as the full moon or a slice of round fruit. The circle is the basis for the wheel, which, with related inventions such as gears, makes much of modern machinery possible. In mathematics, the study of the circle has helped inspire the development of geometry, astronomy and calculus.

View the full Wikipedia page for Circle
↑ Return to Menu

Calculus in the context of Polynomial

In mathematics, a polynomial is a mathematical expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate is . An example with three indeterminates is .

Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry.

View the full Wikipedia page for Polynomial
↑ Return to Menu