Calcium-sensing receptor in the context of "Nephron"

Play Trivia Questions online!

or

Skip to study material about Calcium-sensing receptor in the context of "Nephron"

Ad spacer

⭐ Core Definition: Calcium-sensing receptor

The calcium-sensing receptor (CaSR) is a Class C G-protein coupled receptor which senses extracellular levels of calcium ions. It is primarily expressed in the parathyroid gland, the renal tubules of the kidney, pancreatic islets and the brain. In the parathyroid gland, it controls calcium homeostasis by regulating the release of parathyroid hormone (PTH). In the kidney, it has an inhibitory effect on the re-absorption of calcium, potassium, sodium, and water depending on which segment of the tubule is being activated. CaSR has regulatory role in insulin secretion, adhesion and beta-cell proliferation in pancreatic islets.

Since the initial review of CaSR, there has been in-depth analysis of its role related to parathyroid disease and other roles related to tissues and organs in the body. 1993, Brown et al. isolated a clone named BoPCaR (bovine parathyroid calcium receptor) which replicated the effect when introduced to polyvalent cations. Because of this, the ability to clone full-length CaSRs from mammals were performed.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Calcium-sensing receptor in the context of Receptor (biochemistry)

In biochemistry and pharmacology, receptors are chemical structures, composed of protein, that receive and transduce signals that may be integrated into biological systems. These signals are typically chemical messengers which bind to a receptor and produce physiological responses, such as a change in the electrical activity of a cell. For example, GABA, an inhibitory neurotransmitter, inhibits electrical activity of neurons by binding to GABAA receptors. There are three main ways the action of the receptor can be classified: relay of signal, amplification, or integration. Relaying sends the signal onward, amplification increases the effect of a single ligand, and integration allows the signal to be incorporated into another biochemical pathway.

Receptor proteins can be classified by their location. Cell surface receptors, also known as transmembrane receptors, include ligand-gated ion channels, G protein-coupled receptors, and enzyme-linked hormone receptors. Intracellular receptors are those found inside the cell, and include cytoplasmic receptors and nuclear receptors. A molecule that binds to a receptor is called a ligand and can be a protein, peptide (short protein), or another small molecule, such as a neurotransmitter, hormone, pharmaceutical drug, toxin, calcium ion or parts of the outside of a virus or microbe. An endogenously produced substance that binds to a particular receptor is referred to as its endogenous ligand. E.g. the endogenous ligand for the nicotinic acetylcholine receptor is acetylcholine, but it can also be activated by nicotine and blocked by curare. Receptors of a particular type are linked to specific cellular biochemical pathways that correspond to the signal. While numerous receptors are found in most cells, each receptor will only bind with ligands of a particular structure. This has been analogously compared to how locks will only accept specifically shaped keys. When a ligand binds to a corresponding receptor, it activates or inhibits the receptor's associated biochemical pathway, which may also be highly specialised.

↑ Return to Menu