CMOS in the context of "Electronic noise"

Play Trivia Questions online!

or

Skip to study material about CMOS in the context of "Electronic noise"

Ad spacer

⭐ Core Definition: CMOS

Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss", /smɑːs/, /-ɒs/) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuit (IC) chips, including microprocessors, microcontrollers, memory chips, and other digital logic circuits. CMOS overtook NMOS logic as the dominant MOSFET fabrication process for very large-scale integration (VLSI) chips in the 1980s, replacing earlier transistor–transistor logic (TTL) technology at the same time. CMOS has since remained the standard fabrication process for MOSFET semiconductor devices. As of 2011, 99% of IC chips, including most digital, analog and mixed-signal ICs, were fabricated using CMOS technology.

In 1948, Bardeen and Brattain patented an insulated-gate transistor (IGFET) with an inversion layer. Bardeen's concept forms the basis of CMOS technology today. The CMOS process was presented by Fairchild Semiconductor's Frank Wanlass and Chih-Tang Sah at the International Solid-State Circuits Conference in 1963. Wanlass later filed US patent 3,356,858 for CMOS circuitry and it was granted in 1967. RCA commercialized the technology with the trademark "COS-MOS" in the late 1960s, forcing other manufacturers to find another name, leading to "CMOS" becoming the standard name for the technology by the early 1970s. Two important characteristics of CMOS devices are high noise immunity and low static power consumption. Since one transistor of the MOSFET pair is always off, the series combination draws significant power only momentarily during switching between on and off states. Consequently, CMOS devices do not produce as much waste heat as other forms of logic, like NMOS logic or transistor–transistor logic (TTL), which normally have some standing current even when not changing state. These characteristics allow CMOS to integrate a high density of logic functions on a chip. It was primarily for this reason that CMOS became the most widely used technology to be implemented in VLSI chips.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

CMOS in the context of Image sensor

An image sensor or imager is a device that detects and conveys information used to form an image. It does so by converting the variable attenuation of light waves (as they pass through or reflect off objects) into signals, small bursts of current that convey the information. The waves can be light or other electromagnetic radiation. Image sensors are used in electronic imaging devices of both analog and digital types, which include digital cameras, camera modules, camera phones, optical mouse devices, medical imaging equipment, night vision equipment such as thermal imaging devices, radar, sonar, and others. As technology changes, electronic and digital imaging tends to replace chemical and analog imaging.

The two main types of electronic image sensors are the charge-coupled device (CCD) and the active-pixel sensor (CMOS sensor). Both CCD and CMOS sensors are based on metal–oxide–semiconductor (MOS) technology, with CCDs based on MOS capacitors and CMOS sensors based on MOSFET (MOS field-effect transistor) amplifiers. Analog sensors for invisible radiation tend to involve vacuum tubes of various kinds, while digital sensors include flat-panel detectors.

↑ Return to Menu

CMOS in the context of Active-pixel sensor

An active-pixel sensor (APS) is an image sensor where each pixel sensor unit cell has a photodetector (typically a pinned photodiode) and one or more active transistors. In a metal–oxide–semiconductor (MOS) active-pixel sensor, MOS field-effect transistors (MOSFETs) are used as amplifiers. There are different types of APS, including the early NMOS APS and the now much more common complementary MOS (CMOS) APS, also known as the CMOS sensor. CMOS sensors are used in digital camera technologies such as cell phone cameras, web cameras, most modern digital pocket cameras, most digital single-lens reflex cameras (DSLRs), mirrorless interchangeable-lens cameras (MILCs), and lensless imaging for, e.g., blood cells.

CMOS sensors emerged as an alternative to charge-coupled device (CCD) image sensors and eventually outsold them by the mid-2000s.

↑ Return to Menu

CMOS in the context of Frank Wanlass

Frank Marion Wanlass (May 17, 1933, in Thatcher, AZ – September 9, 2010, in Santa Clara, California) was an American electrical engineer. He is best known for inventing, along with Chih-Tang Sah, CMOS (complementary MOS) logic in 1963. CMOS has since become the standard semiconductor device fabrication process for MOSFETs (metal–oxide–semiconductor field-effect transistors).

↑ Return to Menu

CMOS in the context of Chih-Tang Sah

Chih-Tang "Tom" Sah (simplified Chinese: 萨支唐; traditional Chinese: 薩支唐; pinyin: Sà Zhītáng; 10 November 1932 – 5 July 2025) is a Chinese-American electronics engineer and condensed matter physicist. He is best known for inventing CMOS (complementary MOS) logic with Frank Wanlass at Fairchild Semiconductor in 1963. CMOS is used in nearly all modern very large-scale integration (VLSI) semiconductor devices.

He was the Pittman Eminent Scholar and a Graduate Research Professor at the University of Florida from 1988 to 2010. He was a Professor of Physics and Professor of Electrical and Computer Engineering, emeritus, at the University of Illinois at Urbana-Champaign, where he taught for 26 years (1962-1988) and guided 40 students to the Ph.D. degree in electrical engineering and in physics and 34 MSEE theses. At the University of Florida, he guided 10 doctoral theses in EE. He has published more than 300 peer-reviewed journal articles with his graduate students and research associates, and presented about 200 invited lectures and 60 contributed papers in China, Europe, Japan, Taiwan and in the United States on transistor physics, technology and evolution.

↑ Return to Menu

CMOS in the context of W65C816S

The W65C816S (also 65C816 or 65816) is a 16-bit microprocessor (MPU) developed and sold by the Western Design Center (WDC). Introduced in 1985, the W65C816S is an enhanced version of the WDC 65C02 8-bit MPU, itself a CMOS enhancement of the venerable MOS Technology 6502 NMOS MPU. The 65C816 is the CPU for the Apple IIGS and, in modified form, the Super Nintendo Entertainment System.

The 65 in the part's designation comes from its 65C02 compatibility mode, and the 816 signifies that the MPU has selectable 8- and 16-bit register sizes. In addition to the availability of 16-bit registers, the W65C816S extends memory addressing to 24 bits, supporting up to 16 megabytes of random-access memory. It has an enhanced instruction set and a 16-bit stack pointer, as well as several new electrical signals for improved system hardware management.

↑ Return to Menu