Bulk modulus in the context of Shear modulus


Bulk modulus in the context of Shear modulus

Bulk modulus Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Bulk modulus in the context of "Shear modulus"


⭐ Core Definition: Bulk modulus

The bulk modulus ( or or ) of a substance is a measure of the resistance of a substance to bulk compression. It is defined as the ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume.

Other moduli describe the material's response (strain) to other kinds of stress: the shear modulus describes the response to shear stress, and Young's modulus describes the response to normal (lengthwise stretching) stress. For a fluid, only the bulk modulus is meaningful. For a complex anisotropic solid such as wood or paper, these three moduli do not contain enough information to describe its behaviour, and one must use the full generalized Hooke's law. The reciprocal of the bulk modulus at fixed temperature is called the isothermal compressibility.

↓ Menu
HINT:

In this Dossier

Bulk modulus in the context of Compressibility

In thermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility or, if the temperature is held constant, the isothermal compressibility) is a measure of the instantaneous relative volume change of a fluid or solid as a response to a pressure (or mean stress) change. In its simple form, the compressibility (denoted β in some fields) may be expressed as

where V is volume and p is pressure. The choice to define compressibility as the negative of the fraction makes compressibility positive in the (usual) case that an increase in pressure induces a reduction in volume. The reciprocal of compressibility at fixed temperature is called the isothermal bulk modulus.

View the full Wikipedia page for Compressibility
↑ Return to Menu

Bulk modulus in the context of Acoustic lens

Acoustic metamaterials, sometimes referred to as sonic or phononic crystals, are architected materials designed to manipulate sound waves or phonons in gases, liquids, and solids. By tailoring effective parameters such as bulk modulus (β), density (ρ), and in some cases chirality, they can be engineered to transmit, trap, or attenuate waves at selected frequencies, functioning as acoustic resonators when local resonances dominate. Within the broader field of mechanical metamaterials, acoustic metamaterials represent the dynamic branch where wave control is the primary goal. They have been applied to model large-scale phenomena such as seismic waves and earthquake mitigation, as well as small-scale phenomena such as phonon behavior in crystals through band-gap engineering. This band-gap behavior mirrors the electronic band gaps in solids, enabling analogies between acoustic and quantum systems and supporting research in optomechanics and quantum technologies. In mechanics, acoustic metamaterials are particularly relevant for designing structures that mitigate vibrations, shield against blasts, or manipulate wave propagation in civil and aerospace systems.

View the full Wikipedia page for Acoustic lens
↑ Return to Menu

Bulk modulus in the context of Soil consolidation

Soil consolidation refers to the mechanical process by which soil changes volume gradually in response to a change in pressure. This happens because soil is a three-phase material. The first phase consists of soil grains, and a combination of void (air) or other fluid (typically groundwater) comprise the second and third phases. When soil saturated with water is subjected to an increase in pressure, the high volumetric stiffness of water compared to the soil matrix means that the water initially absorbs all the change in pressure without changing volume, creating excess pore water pressure. As water diffuses away from regions of high pressure due to seepage, the soil matrix gradually takes up the pressure change and shrinks in volume. The theoretical framework of consolidation is therefore closely related to the concept of effective stress, and hydraulic conductivity. The early theoretical modern models were proposed one century ago, according to two different approaches, by Karl Terzaghi and Paul Fillunger. The Terzaghi’s model is currently the most utilized in engineering practice and is based on the diffusion equation.

In the narrow sense, "consolidation" refers strictly to this delayed volumetric response to pressure change due to gradual movement of water. Some publications also use "consolidation" in the broad sense, to refer to any process by which soil changes volume due to a change in applied pressure. This broader definition encompasses the overall concept of soil compaction, subsidence, and heave. Some types of soil, mainly those rich in organic matter, show significant creep, whereby the soil changes volume slowly at constant effective stress over a longer time-scale than consolidation due to the diffusion of water. To distinguish between the two mechanisms, "primary consolidation" refers to consolidation due to dissipation of excess water pressure, while "secondary consolidation" refers to the creep process.

View the full Wikipedia page for Soil consolidation
↑ Return to Menu