Bulk density in the context of "Material property"

Play Trivia Questions online!

or

Skip to study material about Bulk density in the context of "Material property"

Ad spacer

⭐ Core Definition: Bulk density

In materials science, bulk density, also called apparent density, is a material property defined as the mass of the many particles of the material divided by the bulk volume. Bulk volume is defined as the total volume the particles occupy, including particle's own volume, inter-particle void volume, and the particles' internal pore volume.

Bulk density is useful for materials such as powders, granules, and other "divided" solids, especially used in reference to mineral components (soil, gravel), chemical substances, pharmaceutical ingredients, foodstuff, or any other masses of corpuscular or particulate matter (particles).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Bulk density in the context of Debris flow

Debris flows are geological phenomena in which water-laden masses of soil and fragmented rock flow down mountainsides, funnel into stream channels, entrain objects in their paths, and form thick, muddy deposits on valley floors. They generally have bulk densities comparable to those of rockslides and other types of landslides (roughly 2000 kilograms per cubic meter), but owing to widespread sediment liquefaction caused by high pore-fluid pressures, they can flow almost as fluidly as water. Debris flows descending steep channels commonly attain speeds that surpass 10 m/s (36 km/h), although some large flows can reach speeds that are much greater. Debris flows with volumes ranging up to about 100,000 cubic meters occur frequently in mountainous regions worldwide. The largest prehistoric flows have had volumes exceeding 1 billion cubic meters (i.e., 1 cubic kilometer). As a result of their high sediment concentrations and mobility, debris flows can be very destructive.

Notable debris-flow disasters of the twentieth century involved more than 20,000 fatalities in Armero, Colombia, in 1985 and tens of thousands in Vargas State, Venezuela, in 1999.

↑ Return to Menu

Bulk density in the context of Hiʻiaka (moon)

Hiʻiaka, formal designation (136108) Haumea I, is the larger, outer moon of the trans-Neptunian dwarf planet Haumea. Discovered by Michael E. Brown and the Keck Observatory adaptive optics team on 26 January 2005, it is named after Hiʻiaka, the patron goddess of the Big Island of Hawaii and one of the daughters of Haumea. The moon follows a slightly elliptical orbit around Haumea every 49.5 days, at a distance of 49,400 km (30,700 mi).

Hiʻiaka is an elongated and irregularly shaped body with a mean diameter of 369 km (229 mi), making it the sixth-largest known moon of a trans-Neptunian object. It has a very low bulk density between 0.46 g/cm and 0.69 g/cm, which indicates it is mostly made of loosely-packed water ice and rock. Telescope observations have shown that Hiʻiaka has a highly reflective surface made of crystalline water ice, much like Haumea itself. Hiʻiaka rotates about its axis every 9.68 hours, and appears to rotate sideways with respect to its orbit around Haumea. Like its smaller sibling moon Namaka, Hiʻiaka is believed to be a fragment of Haumea that was ejected in the aftermath of a giant impact 4.4 billion years ago.

↑ Return to Menu

Bulk density in the context of 21 Lutetia

21 Lutetia is a large M-type asteroid in the main asteroid belt. It measures about 100 kilometers in diameter (120 km along its major axis). It was discovered in 1852 by Hermann Goldschmidt, and is named after Lutetia, the Latin name of Paris.

Lutetia has an irregular shape and is heavily cratered, with the largest impact crater reaching 45 km in diameter. The surface is geologically heterogeneous and is intersected by a system of grooves and scarps, which are thought to be fractures. It has a high overall bulk density, suggesting that it is made of metal-rich rock.

↑ Return to Menu

Bulk density in the context of Bulk material handling

Bulk material handling is an engineering field that is centered on the design of equipment used for the handling of dry materials. Bulk materials are those dry materials which are powdery, granular or lumpy in nature, and are stored in heaps. Examples of bulk materials are minerals, ores, coal, cereals, woodchips, sand, gravel, clay, cement, ash, salt, chemicals, grain, sugar, flour and stone in loose bulk form. It can also relate to the handling of mixed wastes. Bulk material handling is an essential part of all industries that process bulk ingredients, including: food, beverage, confectionery, pet food, animal feed, tobacco, chemical, agricultural, polymer, plastic, rubber, ceramic, electronics, metals, minerals, paint, paper, textiles and more.

Major characteristics of bulk materials, so far as their handling is concerned, are: lump size, bulk weight (density), moisture content, flowability (particle mobility), angle of repose, abrasiveness and corrosivity, among others.

↑ Return to Menu

Bulk density in the context of Histosol

In both the World Reference Base for Soil Resources (WRB) and the USDA soil taxonomy, a Histosol is a soil consisting primarily of organic materials. They are defined as having 40 centimetres (16 in) or more of organic soil material starting within 40 cm from the soil surface. In Soil Taxonomy, Gelisols key out before Histosols, and in WRB, Histosols key out before Cryosols. Therefore, organic permafrost soils belong to the Histosols in WRB (Cryic Histosols) and to the Gelisols (Histels) in Soil Taxonomy.

Organic soil material has an organic carbon content (by weight) of 12 percent or more (Soil Taxonomy) or 20 percent or more (WRB). These materials include muck (sapric soil material), mucky peat (hemic soil material), or peat (fibric soil material). Many Histosols show aquic conditions or artificial drainage, some (Folists in Soil Taxonomy and Folic Histosols in WRB) developed under terrestrial conditions. Organic material and therefore Histosols have very low bulk density. Many are acidic and very deficient in major plant nutrients, especially the raised bogs, which are saturated by rainwater and lack connection to nutrient-containing groundwater.

↑ Return to Menu

Bulk density in the context of Dry quicksand

Dry quicksand is loose sand whose bulk density is reduced by blowing air through it and which yields easily to weight or pressure. It acts similarly to normal quicksand, but it does not contain any water and does not operate on the same principle. Dry quicksand can also be a resulting phenomenon of contractive dilatancy.

Historically, the existence of dry quicksand was doubted, and the reports of humans and complete caravans being lost in dry quicksand were considered to be folklore. In 2004, it was created in the laboratory, but it is still not clear what its actual prevalence in nature is.

↑ Return to Menu