Bryophyte in the context of Rhynia


Bryophyte in the context of Rhynia

Bryophyte Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Bryophyte in the context of "Rhynia"


⭐ Core Definition: Bryophyte

Bryophytes (/ˈbr.əˌfts/) are a group of land plants (embryophytes), sometimes treated as a taxonomic division referred to as Bryophyta sensu lato, that contains three groups of non-vascular land plants: the liverworts, hornworts, and mosses. In the strict sense, the division Bryophyta consists of the mosses only. Bryophytes are characteristically limited in size and prefer moist habitats although some species can survive in drier environments. The bryophytes consist of about 20,000 plant species. Bryophytes produce enclosed reproductive structures (gametangia and sporangia), but they do not produce flowers or seeds. They reproduce sexually by spores and asexually by fragmentation or the production of gemmae.

Though bryophytes were considered a paraphyletic group in recent years, almost all of the most recent phylogenetic evidence supports the monophyly of this group, as originally classified by Wilhelm Schimper in 1879.

↓ Menu
HINT:

In this Dossier

Bryophyte in the context of Moss

Mosses are small, non-vascular flowerless plants in the taxonomic division Bryophyta (/brˈɒfətə/, /ˌbr.əˈftə/) sensu stricto. Bryophyta (sensu lato, Schimp. 1879) may also refer to the parent group bryophytes, which comprise liverworts, mosses, and hornworts. Mosses typically form dense green clumps or mats, often in damp or shady locations. The individual plants are usually composed of simple leaves that are generally only one cell thick, attached to a stem that may be branched or unbranched and has only a limited role in conducting water and nutrients. Although some species have conducting tissues, these are generally poorly developed and structurally different from similar tissue found in vascular plants. Mosses do not have seeds and after fertilisation develop sporophytes with unbranched stalks topped with single capsules containing spores. They are typically 0.2–10 cm (0.1–3.9 in) tall, though some species are much larger. Dawsonia superba, the tallest moss in the world, can grow to 60 cm (24 in) in height. There are approximately 12,000 species.

Mosses are commonly confused with liverworts, hornworts and lichens. Although often described as non-vascular plants, many mosses have advanced vascular systems. Like liverworts and hornworts, the haploid gametophyte generation of mosses is the dominant phase of the life cycle. This contrasts with the pattern in all vascular plants (seed plants and pteridophytes), where the diploid sporophyte generation is dominant. Lichens may superficially resemble mosses, and sometimes have common names that include the word "moss" (e.g., "reindeer moss" or "Iceland moss"), but they are fungal symbioses and not related to mosses.

View the full Wikipedia page for Moss
↑ Return to Menu

Bryophyte in the context of Botany

Botany, also called phytology or plant science, is the branch of natural science and biology that studies plants, especially their anatomy, taxonomy, and ecology. A botanist or plant scientist is a scientist who specialises in this field. "Plant" and "botany" may be defined more narrowly to include only land plants and their study, which is also known as phytology. Phytologists or botanists (in the strict sense) study approximately 410,000 species of land plants, including some 391,000 species of vascular plants (of which approximately 369,000 are flowering plants) and approximately 20,000 bryophytes.

Botany originated as prehistoric herbalism to identify and later cultivate plants that were edible, poisonous, and medicinal, making it one of the first endeavours of human investigation. Medieval physic gardens, often attached to monasteries, contained plants that possibly had medicinal benefits. They were forerunners of the first botanical gardens attached to universities, founded from the 1540s onwards. One of the earliest was the Padua botanical garden. These gardens facilitated the academic study of plants. Efforts to catalogue and describe their collections were the beginnings of plant taxonomy and led in 1753 to the binomial system of nomenclature of Carl Linnaeus that remains in use to this day for the naming of all biological species.

View the full Wikipedia page for Botany
↑ Return to Menu

Bryophyte in the context of Land plant

The embryophytes (/ˈɛmbriəˌfts/) are a clade of plants, known as Embryophyta (Plantae sensu strictissimo) (/ˌɛmbriˈɒfətə, -ˈftə/) or land plants. They are the most familiar group of photoautotrophs that make up the vegetation on Earth's dry lands and wetlands. Embryophytes have a common ancestor with green algae, having emerged within the Phragmoplastophyta clade of freshwater charophyte green algae as a sister taxon of Charophyceae, Coleochaetophyceae and Zygnematophyceae. Embryophytes consist of the bryophytes and the polysporangiophytes. Living embryophytes include hornworts, liverworts, mosses, lycophytes, ferns, gymnosperms and angiosperms (flowering plants). Embryophytes have haplodiplontic life cycles.

The embryophytes are informally called "land plants" because they thrive primarily in terrestrial habitats (despite some members having evolved secondarily to live once again in semiaquatic/aquatic habitats), while the related green algae are primarily aquatic. Embryophytes are complex multicellular eukaryotes with specialized reproductive organs. The name derives from their innovative characteristic of nurturing the young embryo sporophyte during the early stages of its multicellular development within the tissues of the parent gametophyte. With very few exceptions, embryophytes obtain biological energy by photosynthesis, using chlorophyll a and b to harvest the light energy in sunlight for carbon fixation from carbon dioxide and water in order to synthesize carbohydrates while releasing oxygen as a byproduct. The study of land plants is called phytology.

View the full Wikipedia page for Land plant
↑ Return to Menu

Bryophyte in the context of Evolutionary history of plants

The evolution of plants has resulted in a wide range of complexity, from the earliest algal mats of unicellular archaeplastids evolved through endosymbiosis, through multicellular marine and freshwater green algae, to spore-bearing terrestrial bryophytes, lycopods and ferns, and eventually to the complex seed-bearing gymnosperms and angiosperms (flowering plants) of today. While many of the earliest groups continue to thrive, as exemplified by red and green algae in marine environments, more recently derived groups have displaced previously ecologically dominant ones; for example, the ascendance of flowering plants over gymnosperms in terrestrial environments.

There is evidence that cyanobacteria and multicellular thalloid eukaryotes lived in freshwater communities on land as early as 1 billion years ago, and that communities of complex, multicellular photosynthesizing organisms existed on land in the late Precambrian, around 850 million years ago.

View the full Wikipedia page for Evolutionary history of plants
↑ Return to Menu

Bryophyte in the context of Glomeromycota

Glomeromycota (often referred to as glomeromycetes, as they include only one class, Glomeromycetes) are one of eight currently recognized divisions within the kingdom Fungi, with approximately 230 described species. Members of the Glomeromycota form arbuscular mycorrhizas (AMs) with the thalli of bryophytes and the roots of vascular land plants. Not all species have been shown to form AMs, and one, Geosiphon pyriformis, is known not to do so. Instead, it forms an endocytobiotic association with Nostoc cyanobacteria. The majority of evidence shows that the Glomeromycota are dependent on land plants (Nostoc in the case of Geosiphon) for carbon and energy, but there is recent circumstantial evidence that some species may be able to lead an independent existence. The arbuscular mycorrhizal species are terrestrial and widely distributed in soils worldwide where they form symbioses with the roots of the majority of plant species (>80%). They can also be found in wetlands, including salt-marshes, and associated with epiphytic plants.

According to multigene phylogenetic analyses, this taxon is located as a member of the phylum Mucoromycota. Currently, the phylum name Glomeromycota is invalid, and the subphylum Glomeromycotina should be used to describe this taxon.

View the full Wikipedia page for Glomeromycota
↑ Return to Menu

Bryophyte in the context of Antheridia

An antheridium is a haploid structure or organ producing and containing male gametes (called antherozoids or sperm). The plural form is antheridia, and a structure containing one or more antheridia is called an androecium.

Antheridia are present in the gametophyte phase of cryptogams like bryophytes and ferns. Many algae and some fungi, for example, ascomycetes and water moulds, also have antheridia during their reproductive stages. In gymnosperms and angiosperms, the male gametophytes have been reduced to pollen grains, and in most of these, the antheridia have been reduced to a single generative cell within the pollen grain. During pollination, this generative cell divides and gives rise to sperm cells.

View the full Wikipedia page for Antheridia
↑ Return to Menu

Bryophyte in the context of Glossary of plant morphology

This page provides a glossary of plant morphology. Botanists and other biologists who study plant morphology use a number of different terms to classify and identify plant organs and parts that can be observed using no more than a handheld magnifying lens. This page provides help in understanding the numerous other pages describing plants by their various taxa. The accompanying page—Plant morphology—provides an overview of the science of the external form of plants. There is also an alphabetical list: Glossary of botanical terms. In contrast, this page deals with botanical terms in a systematic manner, with some illustrations, and organized by plant anatomy and function in plant physiology.

This glossary primarily includes terms that deal with vascular plants (ferns, gymnosperms and angiosperms), particularly flowering plants (angiosperms). Non-vascular plants (bryophytes), with their different evolutionary background, tend to have separate terminology. Although plant morphology (the external form) is integrated with plant anatomy (the internal form), the former became the basis of the taxonomic description of plants that exists today, due to the few tools required to observe.

View the full Wikipedia page for Glossary of plant morphology
↑ Return to Menu

Bryophyte in the context of Rhizoid

Rhizoids are protuberances that extend from the lower epidermal cells of bryophytes and algae. They are similar in structure and function to the root hairs of vascular land plants. Similar structures are formed by some fungi. Rhizoids may be unicellular or multicellular.

View the full Wikipedia page for Rhizoid
↑ Return to Menu

Bryophyte in the context of Sporeling

A sporeling is a young plant or fungus produced by a germinated spore, similar to a seedling derived from a germinated seed. They occur in algae, fungi, lichens, bryophytes and seedless vascular plants.

View the full Wikipedia page for Sporeling
↑ Return to Menu

Bryophyte in the context of Physcomitrella patens

Physcomitrella patens is a synonym of Physcomitrium patens, the spreading earthmoss. It is a moss, a bryophyte used as a model organism for studies on plant evolution, development, and physiology.

View the full Wikipedia page for Physcomitrella patens
↑ Return to Menu

Bryophyte in the context of Polysporangiophyte

Polysporangiophytes, also called polysporangiates or formally Polysporangiophyta, are plants in which the spore-bearing generation (sporophyte) has branching stems (axes) that bear sporangia. The name literally means 'many sporangia plant'. The clade includes all land plants (embryophytes) except for the bryophytes (liverworts, mosses and hornworts) whose sporophytes are normally unbranched, even if a few exceptional cases occur. While the definition is independent of the presence of vascular tissue, all living polysporangiophytes also have vascular tissue, i.e., are vascular plants or tracheophytes. Extinct polysporangiophytes are known that have no vascular tissue and so are not tracheophytes.

View the full Wikipedia page for Polysporangiophyte
↑ Return to Menu