Breakdown voltage in the context of Insulator (electrical)


Breakdown voltage in the context of Insulator (electrical)

Breakdown voltage Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Breakdown voltage in the context of "Insulator (electrical)"


⭐ Core Definition: Breakdown voltage

The breakdown voltage of an insulator is the minimum voltage that causes a portion of an insulator to experience electrical breakdown and become electrically conductive.

For diodes, the breakdown voltage is the minimum reverse voltage that makes the diode conduct appreciably in reverse. Some devices (such as TRIACs) also have a forward breakdown voltage.

↓ Menu
HINT:

In this Dossier

Breakdown voltage in the context of Insulator (electricity)

An electrical insulator is a material in which electric current does not flow freely. The atoms of the insulator have tightly bound electrons which cannot readily move. Other materials—semiconductors and conductors—conduct electric current more easily. The property that distinguishes an insulator is its resistivity; insulators have higher resistivity than semiconductors or conductors. The most common examples are non-metals.

A perfect insulator does not exist because even the materials used as insulators contain small numbers of mobile charges (charge carriers) which can carry current. In addition, all insulators become electrically conductive when a sufficiently large voltage is applied that the electric field tears electrons away from the atoms. This is known as electrical breakdown, and the voltage at which it occurs is called the breakdown voltage of an insulator. Some materials such as glass, paper and PTFE, which have high resistivity, are very good electrical insulators. A much larger class of materials, even though they may have lower bulk resistivity, are still good enough to prevent significant current from flowing at normally used voltages, and thus are employed as insulation for electrical wiring and cables. Examples include rubber-like polymers and most plastics which can be thermoset or thermoplastic in nature.

View the full Wikipedia page for Insulator (electricity)
↑ Return to Menu

Breakdown voltage in the context of Electrical breakdown

In electronics, electrical breakdown or dielectric breakdown is a process that occurs when an electrically insulating material (a dielectric), subjected to a high enough voltage, suddenly becomes a conductor and current flows through it. All insulating materials undergo breakdown when the electric field caused by an applied voltage exceeds the material's dielectric strength. The voltage at which a given insulating object becomes conductive is called its breakdown voltage and, in addition to its dielectric strength, depends on its size and shape, and the location on the object at which the voltage is applied. Under sufficient voltage, electrical breakdown can occur within solids, liquids, or gases (and theoretically even in a vacuum). However, the specific breakdown mechanisms are different for each kind of dielectric medium.

Electrical breakdown may be a momentary event (as in an electrostatic discharge), or may lead to a continuous electric arc if protective devices fail to interrupt the current in a power circuit. In this case electrical breakdown can cause catastrophic failure of electrical equipment, and fire hazards.

View the full Wikipedia page for Electrical breakdown
↑ Return to Menu

Breakdown voltage in the context of Dielectric strength

In physics, the term dielectric strength has the following meanings:

  • for a pure electrically insulating material, the maximum electric field that the material can withstand under ideal conditions without undergoing electrical breakdown and becoming electrically conductive (i.e. without failure of its insulating properties).
  • For a specific piece of dielectric material and location of electrodes, the minimum applied electric field (i.e. the applied voltage divided by electrode separation distance) that results in breakdown. This is the concept of breakdown voltage.

The theoretical dielectric strength of a material is an intrinsic property of the bulk material, and is independent of the configuration of the material or the electrodes with which the field is applied. This "intrinsic dielectric strength" corresponds to what would be measured using pure materials under ideal laboratory conditions. At breakdown, the electric field frees bound electrons. If the applied electric field is sufficiently high, free electrons from background radiation may be accelerated to velocities that can liberate additional electrons by collisions with neutral atoms or molecules, in a process known as avalanche breakdown. Breakdown occurs quite abruptly (typically in nanoseconds), resulting in the formation of an electrically conductive path and a disruptive discharge through the material. In a solid material, a breakdown event severely degrades, or even destroys, its insulating capability.

View the full Wikipedia page for Dielectric strength
↑ Return to Menu