Born–Oppenheimer approximation in the context of Max Born


Born–Oppenheimer approximation in the context of Max Born

Born–Oppenheimer approximation Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Born–Oppenheimer approximation in the context of "Max Born"


⭐ Core Definition: Born–Oppenheimer approximation

In quantum chemistry and molecular physics, the Born–Oppenheimer (BO) approximation is the assumption that the wave functions of atomic nuclei and electrons in a molecule can be treated separately, based on the fact that the nuclei are much heavier than the electrons. Due to the larger relative mass of a nucleus compared to an electron, the coordinates of the nuclei in a system are approximated as fixed, while the coordinates of the electrons are dynamic. The approach is named after Max Born and his 23-year-old graduate student J. Robert Oppenheimer, the latter of whom proposed it in 1927 during a period of intense foment in the development of quantum mechanics.

The approximation is widely used in quantum chemistry to speed up the computation of molecular wavefunctions and other properties for large molecules. There are cases where the assumption of separable motion no longer holds, which make the approximation lose validity (it is said to "break down"), but even then the approximation is usually used as a starting point for more refined methods.

↓ Menu
HINT:

In this Dossier

Born–Oppenheimer approximation in the context of Molecular mechanics

In physical chemistry and classical mechanics, molecular mechanics is a computational method used to model molecular systems. The Born–Oppenheimer approximation is assumed valid and the potential energy of all systems is calculated as a function of the nuclear coordinates using force fields. Molecular mechanics can be used to study molecule systems ranging in size and complexity from small to large biological systems or material assemblies with many thousands to millions of atoms.

All-atomistic molecular mechanics methods have the following properties:

View the full Wikipedia page for Molecular mechanics
↑ Return to Menu

Born–Oppenheimer approximation in the context of Energy profile

In theoretical chemistry, an energy profile is a theoretical representation of a chemical reaction or process as a single energetic pathway as the reactants are transformed into products. This pathway runs along the reaction coordinate, which is a parametric curve that follows the pathway of the reaction and indicates its progress; thus, energy profiles are also called reaction coordinate diagrams. They are derived from the corresponding potential energy surface (PES), which is used in computational chemistry to model chemical reactions by relating the energy of a molecule(s) to its structure (within the Born–Oppenheimer approximation).

Qualitatively, the reaction coordinate diagrams (one-dimensional energy surfaces) have numerous applications. Chemists use reaction coordinate diagrams as both an analytical and pedagogical aid for rationalizing and illustrating kinetic and thermodynamic events. The purpose of energy profiles and surfaces is to provide a qualitative representation of how potential energy varies with molecular motion for a given reaction or process.

View the full Wikipedia page for Energy profile
↑ Return to Menu