Block (meteorology) in the context of "Cyclone"

Play Trivia Questions online!

or

Skip to study material about Block (meteorology) in the context of "Cyclone"

Ad spacer

⭐ Core Definition: Block (meteorology)

Blocks in meteorology are large-scale patterns in the atmospheric pressure field that are nearly stationary, effectively "blocking" or redirecting migratory cyclones. They are also known as blocking highs or blocking anticyclones. These blocks can remain in place for several days or even weeks, causing the areas affected by them to have the same kind of weather for an extended period of time (e.g. precipitation for some areas, clear skies for others). In the Northern Hemisphere, extended blocking occurs most frequently in the spring over the eastern Pacific and Atlantic Oceans. While these events are linked to the occurrence of extreme weather events such as heat waves, particularly the onset and decay of these events is still not well captured in numerical weather forecasts and remains an open area of research.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Block (meteorology) in the context of Urban heat island

Urban areas usually experience the urban heat island (UHI) effect; that is, they are significantly warmer than surrounding rural areas. The temperature difference is usually larger at night than during the day, and is most apparent when winds are weak, under block conditions, noticeably during the summer and winter.The main cause of the UHI effect is from the modification of land surfaces, while waste heat generated by energy usage is a secondary contributor. Urban areas occupy about 0.5% of the Earth's land surface but host more than half of the world's population. As a population center grows, it tends to expand its area and increase its average temperature. The term heat island is also used; the term can be used to refer to any area that is relatively hotter than the surrounding, but generally refers to human-disturbed areas.

Monthly rainfall is greater downwind of cities, partially due to the UHI. Increases in heat within urban centers increases the length of growing seasons, decreases air quality by increasing the production of pollutants such as ozone, and decreases water quality as warmer waters flow into area streams and put stress on their ecosystems.

↑ Return to Menu