Blackbody radiation in the context of "Rayleigh–Jeans law"

Play Trivia Questions online!

or

Skip to study material about Blackbody radiation in the context of "Rayleigh–Jeans law"

Ad spacer

⭐ Core Definition: Blackbody radiation

Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific continuous spectrum that depends only on the body's temperature.

A perfectly-insulated enclosure which is in thermal equilibrium internally contains blackbody radiation and will emit it through a hole made in its wall, provided the hole is small enough to have a negligible effect upon the equilibrium. The thermal radiation spontaneously emitted by many ordinary objects can be approximated as blackbody radiation.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Blackbody radiation in the context of Radio wave

Radio waves (formerly called Hertzian waves) are a type of electromagnetic radiation with the lowest frequencies and the longest wavelengths in the electromagnetic spectrum, typically with frequencies below 300 gigahertz (GHz) and wavelengths greater than 1 millimeter (364 inch), about the diameter of a grain of rice. Radio waves with frequencies above about 1 GHz and wavelengths shorter than 30 centimeters are called microwaves. Like all electromagnetic waves, radio waves in vacuum travel at the speed of light, and in the Earth's atmosphere at a slightly lower speed. Radio waves are generated by charged particles undergoing acceleration, such as time-varying electric currents. Naturally occurring radio waves are emitted by lightning and astronomical objects, and are part of the blackbody radiation emitted by all warm objects.

Radio waves are generated artificially by an electronic device called a transmitter, which is connected to an antenna, which radiates the waves. They are received by another antenna connected to a radio receiver, which processes the received signal. Radio waves are very commonly used in modern technology for fixed and mobile radio communication, broadcasting, radar and radio navigation systems, communications satellites, wireless computer networks, and many other applications. Different frequencies of radio waves have different propagation characteristics in the Earth's atmosphere; long waves can diffract around obstacles like mountains and follow the contour of the Earth (ground waves), shorter waves can reflect off the ionosphere and return to Earth beyond the horizon (skywaves), while much shorter wavelengths bend or diffract very little and travel on a line of sight, so their propagation distances are limited to the visual horizon.

↑ Return to Menu

Blackbody radiation in the context of Thermal energy

The term "thermal energy" is often used ambiguously in physics and engineering. It can denote several different physical concepts, including:

Mark Zemansky (1970) has argued that the term "thermal energy" is best avoided due to its ambiguity. He suggests using more precise terms such as "internal energy" and "heat" to avoid confusion. The term is, however, used in some textbooks.

↑ Return to Menu

Blackbody radiation in the context of Infrared excess

An infrared excess is a measurement of an astronomical source, typically a star, that in their spectral energy distribution has a greater measured infrared flux than expected by assuming the star is a blackbody radiator. Infrared excesses are often the result of circumstellar dust heated by starlight and reemitted at longer wavelengths. They are common in young stellar objects and evolved stars on the asymptotic giant branch or older.

In addition, monitoring for infrared excess emission from stellar systems is one possible method that could enable a search for large-scale stellar engineering projects of a hypothetical extraterrestrial civilization; for example a Dyson sphere or Dyson swarm. This infrared excess would be the outcome of the waste heat emitted by the aforementioned structures if they are considered blackbodies at temperatures close to 300 K.

↑ Return to Menu