Biological interaction in the context of Animal body


Biological interaction in the context of Animal body

Biological interaction Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Biological interaction in the context of "Animal body"


⭐ Core Definition: Biological interaction

In ecology, a biological interaction is the effect that a pair of organisms living together in a community have on each other. They can be either of the same species (intraspecific interactions), or of different species (interspecific interactions). These effects may be short-term, or long-term, both often strongly influence the adaptation and evolution of the species involved. Biological interactions range from mutualism, beneficial to both partners, to competition, harmful to both partners. Interactions can be direct when physical contact is established or indirect, through intermediaries such as shared resources, territories, ecological services, metabolic waste, toxins or growth inhibitors. This type of relationship can be shown by net effect based on individual effects on both organisms arising out of relationship.

Several recent studies have suggested non-trophic species interactions such as habitat modification and mutualisms can be important determinants of food web structures. However, it remains unclear whether these findings generalize across ecosystems, and whether non-trophic interactions affect food webs randomly, or affect specific trophic levels or functional groups.

↓ Menu
HINT:

In this Dossier

Biological interaction in the context of Ecological communities

In ecology, a community is a group or association of populations of two or more different species occupying the same geographical area at the same time, also known as a biocoenosis, biotic community, biological community, ecological community, or life assemblage. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".

Community ecology or synecology is the study of the interactions between species in communities on many spatial and temporal scales, including the distribution, structure, abundance, demography, and interactions of coexisting populations. The primary focus of community ecology is on the interactions between populations as determined by specific genotypic and phenotypic characteristics. It is important to understand the origin, maintenance, and consequences of species diversity when evaluating community ecology.

View the full Wikipedia page for Ecological communities
↑ Return to Menu

Biological interaction in the context of Animal

Animals are multicellular, eukaryotic organisms comprising the biological kingdom Animalia (/ˌænɪˈmliə/). With few exceptions, animals consume organic material, breathe oxygen, have myocytes and are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. Animals form a clade, meaning that they arose from a single common ancestor. Over 1.5 million living animal species have been described, of which around 1.05 million are insects, over 85,000 are molluscs, and around 65,000 are vertebrates. It has been estimated there are as many as 7.77 million animal species on Earth. Animal body lengths range from 8.5 μm (0.00033 in) to 33.6 m (110 ft). They have complex ecologies and interactions with each other and their environments, forming intricate food webs. The scientific study of animals is known as zoology, and the study of animal behaviour is known as ethology.

The animal kingdom is divided into five major clades, namely Porifera, Ctenophora, Placozoa, Cnidaria and Bilateria. Most living animal species belong to the clade Bilateria, a highly proliferative clade whose members have a bilaterally symmetric and significantly cephalised body plan, and the vast majority of bilaterians belong to two large clades: the protostomes, which includes organisms such as arthropods, molluscs, flatworms, annelids and nematodes; and the deuterostomes, which include echinoderms, hemichordates and chordates, the latter of which contains the vertebrates. The much smaller basal phylum Xenacoelomorpha have an uncertain position within Bilateria.

View the full Wikipedia page for Animal
↑ Return to Menu

Biological interaction in the context of Competition (biology)

Competition is an interaction between organisms or species in which both require one or more resources that are in limited supply (such as food, water, or territory). Competition lowers the fitness of both organisms involved since the presence of one of the organisms always reduces the amount of the resource available to the other.

In the study of community ecology, competition within and between members of a species is an important biological interaction. Competition is one of many interacting biotic and abiotic factors that affect community structure, species diversity, and population dynamics (shifts in a population over time).

View the full Wikipedia page for Competition (biology)
↑ Return to Menu

Biological interaction in the context of Symbiosis

Symbiosis is any close and long-term biological interaction between two organisms of different species. In 1879, Heinrich Anton de Bary defined symbiosis as "the living together of unlike organisms". The term is sometimes more exclusively used in a restricted, mutualistic sense, where both symbionts contribute to each other's subsistence. This means that they benefit each other in some way.

Symbiosis is diverse and can be classified in multiple ways. It can be obligate, meaning that one or both of the organisms depend on each other for survival, or facultative, meaning that they can subsist independently. When one organism lives on the surface of another, such as head lice on humans, it is called ectosymbiosis; when one partner lives inside the tissues of another, such as Symbiodinium within coral, it is termed endosymbiosis. Where the interaction reduces both parties' fitness, it is called competition; where just one party's fitness is reduced, it is called amensalism. Where one benefits but the other is largely unaffected, this is termed commensalism. Where one benefits at the other's expense, it is called parasitism. Finally, where both parties benefit, the relationship is described as mutualistic.

View the full Wikipedia page for Symbiosis
↑ Return to Menu

Biological interaction in the context of Predator

Predation is a biological interaction in which one organism, the predator, kills and eats another organism, its prey. It is one of a family of common feeding behaviours that includes parasitism and micropredation (which usually do not kill the host) and parasitoidism (which always does, eventually). It is distinct from scavenging on dead prey, though many predators also scavenge; it overlaps with herbivory, as seed predators and destructive frugivores are predators.

Predation behaviour varies significantly depending on the organism. Many predators, especially carnivores, have evolved distinct hunting strategies. Pursuit predation involves the active search for and pursuit of prey, whilst ambush predators instead wait for prey to present an opportunity for capture, and often use stealth or aggressive mimicry. Other predators are opportunistic or omnivorous and only practice predation occasionally.

View the full Wikipedia page for Predator
↑ Return to Menu

Biological interaction in the context of Biologist

A biologist is a scientist who conducts research in biology. Biologists are interested in studying life on Earth, whether it is an individual cell, a multicellular organism, or a community of interacting populations. They usually specialize in a particular branch (e.g., molecular biology, zoology, and evolutionary biology) of biology and have a specific research focus (e.g., studying malaria or cancer).

Biologists who are involved in basic research have the aim of advancing knowledge about the natural world. They conduct their research using the scientific method, which is an empirical method for testing hypotheses. Their discoveries may have applications for some specific purpose such as in biotechnology, which has the goal of developing medically useful products for humans.

View the full Wikipedia page for Biologist
↑ Return to Menu

Biological interaction in the context of Biocoenosis

A biocenosis (UK English, biocoenosis, also biocenose, biocoenose, biotic community, biological community, ecological community, life assemblage), coined by Karl Möbius in 1877, describes the interacting organisms living together in a habitat (biotope). The use of this term has declined in the 21st сentury.

In the palaeontological literature, the term distinguishes "life assemblages", which reflect the original living community, living together at one place and time. In other words, it is an assemblage of fossils or a community of specific time, which is different from "death assemblages" (thanatocoenoses). No palaeontological assemblage will ever completely represent the original biological community (i.e. the biocoenosis, in the sense used by an ecologist); the term thus has somewhat different meanings in a palaeontological and an ecological context.

View the full Wikipedia page for Biocoenosis
↑ Return to Menu

Biological interaction in the context of Mutualism (biology)

Mutualism describes the ecological interaction between two or more species where each species has a net benefit. Mutualism is a common type of ecological interaction. Prominent examples are:

Mutualism can be contrasted with interspecific competition, in which each species experiences reduced fitness, and exploitation, and with parasitism, in which one species benefits at the expense of the other. However, mutualism may evolve from interactions that began with imbalanced benefits, such as parasitism.

View the full Wikipedia page for Mutualism (biology)
↑ Return to Menu

Biological interaction in the context of Commensal

Commensalism is a long-term biological interaction (symbiosis) in which members of one species gain benefits while those of the other species neither benefit nor are harmed. This is in contrast with mutualism, in which both organisms benefit from each other; amensalism, where one is harmed while the other is unaffected; and parasitism, where one is harmed and the other benefits.

The commensal (the species that benefits from the association) may obtain nutrients, shelter, support, or locomotion from the host species, which is substantially unaffected. The commensal relation is often between a larger host and a smaller commensal; the host organism is unmodified, whereas the commensal species may show great structural adaptation consistent with its habits, as in the remoras that ride attached to sharks and other fishes. Remoras feed on their hosts' fecal matter, while pilot fish feed on the leftovers of their hosts' meals. Numerous birds perch on bodies of large mammal herbivores or feed on the insects turned up by grazing mammals.

View the full Wikipedia page for Commensal
↑ Return to Menu

Biological interaction in the context of Biogeochemistry

Biogeochemistry is the scientific discipline that involves the study of the chemical, physical, geological, and biological processes and reactions that govern the composition of the natural environment (including the biosphere, the cryosphere, the hydrosphere, the pedosphere, the atmosphere, and the lithosphere). In particular, biogeochemistry is the study of biogeochemical cycles, the cycles of chemical elements such as carbon and nitrogen, and their interactions with and incorporation into living things transported through earth scale biological systems in space and time. The field focuses on chemical cycles which are either driven by or influence biological activity. Particular emphasis is placed on the study of carbon, nitrogen, oxygen, sulfur, iron, and phosphorus cycles. Biogeochemistry is a systems science closely related to systems ecology.

View the full Wikipedia page for Biogeochemistry
↑ Return to Menu

Biological interaction in the context of Ecological network

An ecological network is a representation of the biotic interactions in an ecosystem, in which species (nodes) are connected by pairwise interactions (links). These interactions can be trophic or symbiotic. Ecological networks are used to describe and compare the structures of real ecosystems, while network models are used to investigate the effects of network structure on properties such as ecosystem stability.

View the full Wikipedia page for Ecological network
↑ Return to Menu

Biological interaction in the context of Intertidal ecology

Intertidal ecology is the study of intertidal ecosystems, where organisms live between the low and high tide lines. At low tide, the intertidal is exposed whereas at high tide, the intertidal is underwater. Intertidal ecologists therefore study the interactions between intertidal organisms and their environment, as well as between different species of intertidal organisms within a particular intertidal community. The most important environmental and species interactions may vary based on the type of intertidal community being studied, the broadest of classifications being based on substrates—rocky shore and soft bottom communities.

Organisms living in this zone have a highly variable and often hostile environment, and have evolved various adaptations to cope with and even exploit these conditions. One easily visible feature of intertidal communities is vertical zonation, where the community is divided into distinct vertical bands of specific species going up the shore. Species ability to cope with abiotic factors associated with emersion stress, such as desiccation determines their upper limits, while biotic interactions e.g.competition with other species sets their lower limits.

View the full Wikipedia page for Intertidal ecology
↑ Return to Menu