The concept of biological computation proposes that living organisms perform computations, and that as such, abstract ideas of information and computation may be key to understanding biology. As a field, biological computation can include the study of the systems biology computations performed by biota, the design of algorithms inspired by the computational methods of bio-data, the design and engineering of manufactured computational devices using synthetic biology and computer methods for biological data, Computational Biology. This extenuates DNA Computation, Evolutionary Computation, Autonomic Computation, Morphological Computation, Morphogenetic Computation, Amorphous Computation, and Hyperdimensional Computation.
According to Dominique Chu, Mikhail Prokopenko, and J. Christian J. Ray, "the most important class of natural computers can be found in biological systems that perform computation on multiple levels. From molecular and cellular information processing networks to ecologies, economies and brains, life computes. Despite ubiquitous agreement on this fact going back as far as von Neumann automata and McCulloch–Pitts neural nets, we so far lack principles to understand rigorously how computation is done in living, or active, matter".