Bilaterally symmetric in the context of "Rotation (geometry)"

Play Trivia Questions online!

or

Skip to study material about Bilaterally symmetric in the context of "Rotation (geometry)"

Ad spacer

⭐ Core Definition: Bilaterally symmetric

Symmetry in biology refers to the symmetry observed in organisms, including plants, animals, fungi, and bacteria. External symmetry can be easily seen by just looking at an organism. For example, the face of a human being has a plane of symmetry down its centre, or a pine cone displays a clear symmetrical spiral pattern. Internal features can also show symmetry, for example the tubes in the human body (responsible for transporting gases, nutrients, and waste products) which are cylindrical and have several planes of symmetry.

Biological symmetry can be thought of as a balanced distribution of duplicate body parts or shapes within the body of an organism. Importantly, unlike in mathematics, symmetry in biology is always approximate. For example, plant leaves – while considered symmetrical – rarely match up exactly when folded in half. Symmetry is one class of patterns in nature whereby there is near-repetition of the pattern element, either by reflection or rotation.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Bilaterally symmetric in the context of Animal

Animals are multicellular, eukaryotic organisms comprising the biological kingdom Animalia (/ˌænɪˈmliə/). With few exceptions, animals consume organic material, breathe oxygen, have myocytes and are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. Animals form a clade, meaning that they arose from a single common ancestor. Over 1.5 million living animal species have been described, of which around 1.05 million are insects, over 85,000 are molluscs, and around 65,000 are vertebrates. It has been estimated there are as many as 7.77 million animal species on Earth. Animal body lengths range from 8.5 μm (0.00033 in) to 33.6 m (110 ft). They have complex ecologies and interactions with each other and their environments, forming intricate food webs. The scientific study of animals is known as zoology, and the study of animal behaviour is known as ethology.

The animal kingdom is divided into five major clades, namely Porifera, Ctenophora, Placozoa, Cnidaria and Bilateria. Most living animal species belong to the clade Bilateria, a highly proliferative clade whose members have a bilaterally symmetric and significantly cephalised body plan, and the vast majority of bilaterians belong to two large clades: the protostomes, which includes organisms such as arthropods, molluscs, flatworms, annelids and nematodes; and the deuterostomes, which include echinoderms, hemichordates and chordates, the latter of which contains the vertebrates. The much smaller basal phylum Xenacoelomorpha have an uncertain position within Bilateria.

↑ Return to Menu

Bilaterally symmetric in the context of Dickinsonia

Dickinsonia is a genus of extinct organism that lived during the late Ediacaran period in what is now Australia, China, Russia, and Ukraine. It had a round, approximately bilaterally symmetric body with multiple segments running along it. It could range from a few millimeters to over a meter in length, and likely lived in shallow waters, feeding on the microbial mats that dominated the seascape at the time.

As a member of the Ediacaran biota, its relationships to other organisms has been heavily debated. It was initially proposed to be a jellyfish, and over the years has been claimed to be a land-dwelling lichen, placozoan, or even a giant protist. Currently, the most popular interpretation is that it was a seafloor dwelling animal, perhaps a primitive stem group bilaterian, although this is still contentious. Among other Ediacaran organisms, it shares a close resemblance to other segmented forms like Vendia, Yorgia and Spriggina and has been proposed to be a member of the phylum Proarticulata or alternatively the morphogroup Dickinsoniomorpha. It is disputed whether the segments of Dickinsonia are bilaterally symmetric across the midline, or are offset from each other via glide reflection, or possibly both.

↑ Return to Menu