Bijective in the context of Identity function


Bijective in the context of Identity function

Bijective Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Bijective in the context of "Identity function"


⭐ Core Definition: Bijective

In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between two sets such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equivalently, a bijection is a relation between two sets such that each element of either set is paired with exactly one element of the other set.

A function is bijective if it is invertible; that is, a function is bijective if and only if there is a function the inverse of f, such that each of the two ways for composing the two functions produces an identity function: for each in and for each in

↓ Menu
HINT:

In this Dossier

Bijective in the context of Group representation

In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication.

In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules.

View the full Wikipedia page for Group representation
↑ Return to Menu

Bijective in the context of Homeomorphism

In mathematics and more specifically in topology, a homeomorphism (from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same.

Very roughly speaking, a topological space is a geometric object, and a homeomorphism results from a continuous deformation of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, this description can be misleading. Some continuous deformations do not produce homeomorphisms, such as the deformation of a line into a point. Some homeomorphisms do not result from continuous deformations, such as the homeomorphism between a trefoil knot and a circle. Homotopy and isotopy are precise definitions for the informal concept of continuous deformation.

View the full Wikipedia page for Homeomorphism
↑ Return to Menu

Bijective in the context of Isometry group

In mathematics, the isometry group of a metric space is the set of all bijective isometries (that is, bijective, distance-preserving maps) from the metric space onto itself, with the function composition as group operation. Its identity element is the identity function. The elements of the isometry group are sometimes called motions of the space.

Every isometry group of a metric space is a subgroup of isometries. It represents in most cases a possible set of symmetries of objects/figures in the space, or functions defined on the space. See symmetry group.

View the full Wikipedia page for Isometry group
↑ Return to Menu