Dry land in the context of "Silurian-Devonian Terrestrial Revolution"

⭐ In the context of the Silurian-Devonian Terrestrial Revolution, the development of what geological feature was a direct result of plant life colonizing dry land?

Ad spacer

⭐ Core Definition: Dry land


Land, also known as dry land, ground, or earth, is the solid terrestrial surface of Earth not submerged by the ocean or another body of water. It makes up 29.2% of Earth's surface and includes all continents and islands. Earth's land surface is almost entirely covered by regolith, a layer of rock, soil, and minerals that forms the outer part of the crust. Land plays an important role in Earth's climate system, being involved in the carbon cycle, nitrogen cycle, and water cycle. One-third of land is covered in trees, another third is used for agriculture, and one-tenth is covered in permanent snow and glaciers. The remainder consists of desert, savannah, and prairie.

Land terrain varies greatly, consisting of mountains, deserts, plains, plateaus, glaciers, and other landforms. In physical geology, the land is divided into two major categories: Mountain ranges and relatively flat interiors called cratons. Both form over millions of years through plate tectonics. Streams – a major part of Earth's water cycle – shape the landscape, carve rocks, transport sediments, and replenish groundwater. At high elevations or latitudes, snow is compacted and recrystallized over hundreds or thousands of years to form glaciers, which can be so heavy that they warp the Earth's crust. About 30 percent of land has a dry climate, due to losing more water through evaporation than it gains from precipitation. Since warm air rises, this generates winds, though Earth's rotation and uneven sun distribution also play a part.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Dry land in the context of Silurian-Devonian Terrestrial Revolution

The Silurian-Devonian Terrestrial Revolution, also known as the Devonian Plant Explosion (DePE) and the Devonian explosion, was a period of rapid colonization, diversification and radiation of land plants (particularly vascular plants) and fungi (especially dikaryans) on dry lands that occurred 428 to 359 million years ago (Mya) during the Silurian and Devonian periods, with the most critical phase occurring during the Late Silurian and Early Devonian.

This diversification of terrestrial photosynthetic florae had vast impacts on the biotic composition of the Earth's surface, especially upon the Earth's atmosphere by oxygenation and carbon fixation. Their roots also eroded into the rocks, creating a layer of water-holding and mineral/organic matter-rich soil on top of Earth's crust known as the pedosphere, and significantly altering the chemistry of Earth's lithosphere and hydrosphere. The floral activities following the Silurian-Devonian plant revolution also exerted significant influences on changes in the water cycle and global climate, as well as driving the biosphere by creating diverse layers of vegetations that provide both sustenance and refuge for both upland and wetland habitats, paving the way for all terrestrial and aquatic biomes that would follow.

↓ Explore More Topics
In this Dossier

Dry land in the context of Wetland

A wetland is a distinct semi-aquatic ecosystem whose groundcovers are flooded or saturated in water, either permanently, for years or decades, or only seasonally. Flooding results in oxygen-poor (anoxic) processes taking place, especially in the soils. Wetlands form a transitional zone between waterbodies and dry lands, and are different from other terrestrial or aquatic ecosystems due to their vegetation's roots having adapted to oxygen-poor waterlogged soils. They are considered among the most biologically diverse of all ecosystems, serving as habitats to a wide range of aquatic and semi-aquatic plants and animals, with often improved water quality due to plant removal of excess nutrients such as nitrates and phosphorus.

Wetlands exist on every continent, except Antarctica. The water in wetlands is either freshwater, brackish or saltwater. The main types of wetland are defined based on the dominant plants and the source of the water. For example, marshes are wetlands dominated by emergent herbaceous vegetation such as reeds, cattails and sedges. Swamps are dominated by woody vegetation such as trees and shrubs (although reed swamps in Europe are dominated by reeds, not trees). Mangrove forest are wetlands with mangroves and halophytic woody plants that have evolved to tolerate salty water.

↑ Return to Menu

Dry land in the context of Inland sea

An inland sea (also known as an epeiric sea or an epicontinental sea) is a continental body of water which is very large in area and is either completely surrounded by dry land (landlocked), or connected to an ocean by a river, strait or "arm of the sea". An inland sea will generally be brackish, with higher salinity than a freshwater lake but usually lower salinity than seawater. As with other seas, inland seas experience tides governed by the orbits of the Moon and Sun.

↑ Return to Menu

Dry land in the context of Devonian

The Devonian (/dəˈvni.ən, dɛ-/ də-VOH-nee-ən, deh-) is a geologic period and system of the Paleozoic era during the Phanerozoic eon, spanning 60.3 million years from the end of the preceding Silurian period at 419.62 million years ago (Ma), to the beginning of the succeeding Carboniferous period at 358.86 Ma. It is the fourth period of both the Paleozoic and the Phanerozoic. It is named after Devon, South West England, where rocks from this period were first studied.

The first significant evolutionary radiation of life on land occurred during the Devonian, as free-sporing land plants (pteridophytes) began to spread across dry land, forming extensive coal forests which covered the continents. By the middle of the Devonian, several groups of vascular plants had evolved leaves and true roots, and by the end of the period the first seed-bearing plants (pteridospermatophytes) appeared. This rapid evolution and colonization process, which had begun during the Silurian, is known as the Silurian-Devonian Terrestrial Revolution. The earliest land animals, predominantly arthropods such as myriapods, arachnids and hexapods, also became well-established early in this period, after beginning their colonization of land at least from the Ordovician Period.

↑ Return to Menu

Dry land in the context of Lake

A lake is often a naturally occurring, relatively large and fixed body of water on or near the Earth's surface. It is localized in a basin or interconnected basins surrounded by dry land. Lakes lie completely on land and are separate from the ocean, although they may be connected with the ocean by rivers. Lakes, like other bodies of water, are part of the water cycle, the processes by which water moves around the Earth. Most lakes are fresh water and account for almost all the world's surface freshwater, but some are salt lakes with salinities even higher than that of seawater. Lakes vary significantly in surface area and volume of water.

Lakes are typically larger and deeper than ponds, which are also water-filled basins on land, although there are no official definitions or scientific criteria distinguishing the two. Lakes are also distinct from lagoons, which are generally shallow tidal pools dammed by sandbars or other material at coastal regions of oceans or large lakes. Most lakes are fed by springs, and both fed and drained by creeks and rivers, but some lakes are endorheic without any outflow, while volcanic lakes are filled directly by precipitation runoffs and do not have any inflow streams.

↑ Return to Menu

Dry land in the context of Ocean world

An ocean world, ocean planet or water world is a type of planet or natural satellite that contains a substantial amount of water in the form of oceans, as part of its hydrosphere, either beneath the surface, as subsurface oceans, or on the surface, potentially submerging all dry land. The term ocean world is also used sometimes for astronomical bodies with an ocean composed of a different fluid or thalassogen, such as lava (the case of Io), ammonia (in a eutectic mixture with water, as is likely the case of Titan's inner ocean) or hydrocarbons (like on Titan's surface, which could be the most abundant kind of exosea). The study of extraterrestrial oceans is referred to as planetary oceanography.

Earth is the only astronomical object known to presently have bodies of liquid water on its surface, although subsurface oceans are suspected to exist on Jupiter's moons Europa and Ganymede and Saturn's moons Enceladus and Titan. Several exoplanets have been found with the right conditions to support liquid water. There are also considerable amounts of subsurface water found on Earth, mostly in the form of aquifers. For exoplanets, current technology cannot directly observe liquid surface water, so atmospheric water vapor may be used as a proxy. The characteristics of ocean worlds provide clues to their history and the formation and evolution of the Solar System as a whole. Of additional interest is their potential to originate and host life.

↑ Return to Menu

Dry land in the context of Anamniotes

The anamniotes are an informal group of vertebrates comprising all fish and amphibians, which lay their eggs in aquatic environments. They are distinguished from the amniotes (reptiles, birds and mammals), which can reproduce on dry land either by laying shelled eggs or by carrying fertilized eggs within the female. Older sources, particularly before the 20th century, may refer to anamniotes as "lower vertebrates" and amniotes as "higher vertebrates", based on the antiquated idea of the evolutionary great chain of being.

The name "anamniote" is a back-formation word created by adding the prefix an- to the word amniote, which in turn refers to the amnion, an extraembryonic membrane present during the amniotes' embryonic development which serves as a biochemical barrier that shields the embryo from environmental fluctuations by regulating the oxygen, carbon dioxide and metabolic waste exchanges and secreting a cushioning fluid. As the name suggests, anamniote embryos lack an amnion during embryonic development, and therefore rely on the presence of external water to provide oxygen and help dilute and excrete waste products (particularly ammonia) via diffusion in order for the embryo to complete development without being intoxicated by their own metabolites. This means anamniotes are almost always dependent on an aqueous (or at least very moist) environment for reproduction and are thus restricted to spawning in or near water bodies. They are also highly sensitive to chemical and temperature variation in the surrounding water, and are also more vulnerable to egg predation and parasitism.

↑ Return to Menu